Miljøudvalget 2015
KOM (2015) 0120
Offentligt
1925138_0001.png
EUROPEAN
COMMISSION
Brussels, 17.7.2018
SWD(2015) 56 final/2
CORRIGENDUM
This document corrects document SWD(2015) 56 final of 09.03.2015.
[Document updated with River Basin Districts ES120, ES122, ES123, ES124, ES125, ES126,
ES127, corresponding to the Canary Islands in Spain].
The text should read as follows:
COMMISSION STAFF WORKING DOCUMENT
Report on the implementation of the Water Framework Directive River Basin
Management Plans
Member State: SPAIN
Accompanying the document
COMMUNICATION FROM THE EUROPEAN COMMISSION TO THE EUROPEAN
PARLIAMENT AND THE COUNCIL
The Water Framework Directive and the Floods Directive: Actions towards the 'good
status' of EU water and to reduce flood risks
{COM(2015) 120 final} - {SWD(2015) 50 final} - {SWD(2015) 51 final} -
{SWD(2015) 52 final} - {SWD(2015) 53 final} - {SWD(2015) 54 final} -
{SWD(2015) 55 final}
EN
EN
kom (2015) 0120 - Ingen titel
TABLE OF CONTENTS
GENERAL INFORMATION .......................................................................................................................................... 5
STATUS OF REPORTING AND COMPLIANCE ....................................................................................................... 9
M
AIN STRENGTHS
....................................................................................................................................................... 10
M
AIN WEAKNESSES
..................................................................................................................................................... 10
GOVERNANCE ............................................................................................................................................................. 11
R
IVER
B
ASIN
M
ANAGEMENT
P
LANS
(RBMP
S
) – S
TRUCTURE
,
COMPLETENESS
,
LEGAL STATUS
............................ 11
C
ONSULTATION
........................................................................................................................................................... 11
CHARACTERISATION OF RIVER BASIN DISTRICTS ........................................................................................ 14
T
YPOLOGY OF
S
URFACE
W
ATER
............................................................................................................................... 14
D
ELINEATION OF
S
URFACE
W
ATER
B
ODIES
.............................................................................................................. 16
I
DENTIFICATION OF SIGNIFICANT PRESSURES AND IMPACTS
.................................................................................... 18
P
ROTECTED AREAS
..................................................................................................................................................... 24
MONITORING............................................................................................................................................................... 27
M
ONITORING OF
S
URFACE
W
ATERS
.......................................................................................................................... 29
M
ONITORING OF
G
ROUND
W
ATERS
........................................................................................................................... 30
M
ONITORING OF
P
ROTECTED
A
REAS
........................................................................................................................ 30
STATUS........................................................................................................................................................................... 35
ASSESSMENT OF ECOLOGICAL STATUS OF SURFACE WATERS ................................................................ 56
A
SSESSMENT METHODS
............................................................................................................................................... 57
R
ESULTS
...................................................................................................................................................................... 60
DESIGNATION OF HMWB AND SETTING OF GOOD ECOLOGICAL POTENTIAL (GEP) ........................ 61
D
ESIGNATION OF
HMWB
........................................................................................................................................... 61
M
ETHODOLOGY FOR
G
OOD
E
COLOGICAL
P
OTENTIAL
(GEP)
................................................................................. 61
R
ESULTS
HMWB
AND
AWB
...................................................................................................................................... 63
ASSESSMENT OF CHEMICAL STATUS OF SURFACE WATER ....................................................................... 66
M
ETHODOLOGY
.......................................................................................................................................................... 66
S
UBSTANCES CAUSING EXCEEDANCES
........................................................................................................................ 66
M
IXING ZONES
............................................................................................................................................................ 69
ASSESSMENT OF GROUNDWATER STATUS ....................................................................................................... 69
Q
UANTITATIVE STATUS
............................................................................................................................................... 70
C
HEMICAL STATUS
...................................................................................................................................................... 70
P
ROTECTED
A
REAS
..................................................................................................................................................... 70
OBJECTIVES AND EXEMPTIONS............................................................................................................................ 72
I
NTRODUCTION
........................................................................................................................................................... 72
P
ROTECTED
A
REAS
..................................................................................................................................................... 73
A
RTICLES
4(4)
AND
4(5)
.............................................................................................................................................. 74
A
RTICLE
4(6)
............................................................................................................................................................... 77
A
RTICLE
4(7)
............................................................................................................................................................... 77
E
XEMPTIONS UNDER THE
G
ROUNDWATER
D
IRECTIVE
............................................................................................. 78
PROGRAMME OF MEASURES ................................................................................................................................. 78
P
ROGRAMME OF
M
EASURES
- G
ENERAL
................................................................................................................... 78
M
EASURES RELATED TO AGRICULTURE
..................................................................................................................... 82
M
EASURES RELATED TO HYDROMORPHOLOGY
......................................................................................................... 86
M
EASURES RELATED TO GROUNDWATER
.................................................................................................................. 89
M
EASURES RELATED TO CHEMICAL POLLUTION
....................................................................................................... 90
2
kom (2015) 0120 - Ingen titel
1925138_0003.png
M
EASURES RELATED TO
A
RTICLE
9
........................................................................................................................... 90
CLIMATE CHANGE..................................................................................................................................................... 95
W
ATER SCARCITY AND DROUGHTS
............................................................................................................................ 95
F
LOOD RISK MANAGEMENT
........................................................................................................................................ 95
A
DAPTATION TO CLIMATE CHANGE
........................................................................................................................... 95
RECOMMENDATIONS ............................................................................................................................................... 96
List of acronyms
AWB
BQE
CW
CWB
DMP
Artificial Water Body
Biological Quality Element
Coastal waters
Coastal Water Bodies
Drought Management Plans
Drinking Water Protected Areas
Ecological flows
Good Ecological Potential
Groundwater Bodies
Heavily Modified Water Body
Instrucción de Planificación Hidrológica (Hydrological Planning Instruction)
Less Stringent Objectives
Lakes
Lake Water Bodies
Protected area
Programme of Measures
Quality Element
River Basin District
River Basin Management Plan
Reglamento de Planificación Hidrológica (Hydrological Planning Regulation)
Rivers
River Water Bodies
Strategic Environmental Assessment
Surface Water Bodies
Transitional waters
Transitional Water Bodies
Water Framework Directive
Water Information System for Europe
DWPA
Eflows
GEP
GWB
HMWB
IPH
LSO
LW
LWB
PA
PoM
QE
RBD
RBMP
RPH
RW
RWB
SEA
SWB
TW
TWB
WFD
WISE
3
kom (2015) 0120 - Ingen titel
1925138_0004.png
GENERAL INFORMATION
Figure 1.1:
Map of River Basin Districts
International River Basin Districts (within EU)
International River Basin Districts (outside EU)
National River Basin Districts (within EU)
Countries (outside EU)
Coastal Waters
Source:
WISE, Eurostat (country borders)
The transposition of the WFD (Directive 2000/60/EC) into Spanish law was made by Article 129 of
Law 62/2003 regarding fiscal, administrative and social measures (Spanish Official Gazette (BOE)
No. 313 of 31 December 2003) which amended the consolidated text of the Water Act, approved by
Royal Legislative Decree 1/2001. A number of minor regulations closed transposition gaps and
enabled the planning process in the first cycle. In this context, the following Royal Decrees (RDs)
are of relevance:
Regulation of Hydrological Planning (Reglamento de Planificación Hidrológica (RPH) (Real
Decreto 907/2007, de 6 julio, por el que se aprueba el Reglamento de la Planificación
Hidrológica, BOE 07-07-2007); and its subsequent modification by RD 1161/2010 de 17 de
septiembre).
Definition of the limits of River Basin Districts (RBDs) (by RD 125/2007, de 2 de febrero, que
fija el ámbito territorial de las demarcaciones hidrográficas (artículo 16 bis 5 del TRLA)).
4
kom (2015) 0120 - Ingen titel
1925138_0005.png
Competent Authorities (RD 126/2007, de 2 de febrero, que regula la composición,
funcionamiento y atribuciones de los Comités de Autoridades Competentes de las
demarcaciones hidrográficas con cuencas intercomunitarias (artículo 36 bis del TRLA)).
The Ministerial Order for Hydrological Planning (ORDEN ARM/2656/2008 sobre Instrucción de
Planificación Hidrológica (IPH)) is a complementary intra-ministerial regulation tool that defines
precisely the procedures for the planning process and other substantial obligations such as the
conditions for granting exceptions and the monitoring and classification of the ecological and
chemical status of surface waters. However, the IPH applies only –to rivers that flow through
different regions
1
(ES010, ES017, ES018, ES020, ES030, ES040, ES050, ES070, ES080, ES091),
and not to rivers that are completely within the territory of one region
2
(ES014, ES060, ES063,
ES064, ES100, ES110 and ES12X). This is due to the distribution of competences between State
and regions established by the Spanish Constitution (Articles 149.1.22 and 148.1.10), where
catchments shared by more than one Region are the exclusive competence of the State, and intra-
community catchments are the exclusive competence of the Regions. National Laws and Decrees
are considered (in full or in part) as basic rules that apply across the country, but Ministerial Orders
do not bind Regions. Additional legislation at Regional level is therefore needed to ensure that
Spanish legislation fully complies with the Directive
3
. Nevertheless, the IPH has been used as a
“guidance document” in the development of intra-community RBMPs. Further guidance documents
have been developed and are either available as draft or final versions, both at National or Regional
levels, in particular for ES100.
At Regional level, several Water Laws have been approved in the past decade to adapt legislation to
comply with the WFD, including Catalonia (2003), Basque Country (2006), Andalusia (2010) and
Galicia (2010 and 2015).
Spain has a long track record of water quantity focused Hydrological Planning, aimed at ensuring
adequate water supply for existing and future demands. This process delivered RBMPs for all
RBDs (different from the current delimitation) in the late 1990s, plus a National Hydrological Plan
approved in 2001. This Plan was partially derogated (Ebro-Segura inter-basin transfer) in 2004.
1
2
3
Called inter-community RBDs.
Called intra-community RBDs.
On this subject see judgement of the EU Court of Justice of 24 October 2013 on case C-512/12 available at
http://curia.europa.eu/juris/liste.jsf?language=en&num=C-151/12
5
kom (2015) 0120 - Ingen titel
1925138_0006.png
RBD
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
Name
Minho-Sil
Galician Coast
Cantábrico Oriental
Cantábrico Occidental
Duero
Tagus
Guadiana
Guadalquivir
Andalusia Mediterranean
Basins
Guadalete and Barbate
Tinto, Odiel and Piedras
Segura
Jucar
Ebro
Internal Basins of Catalonia
Balearic Islands
Gran Canaria
Fuerteventura
Lanzarote
Tenerife
La Palma
La Gomera
El Hierro
Ceuta
Melilla
Size
(km
2
)*
17619
12988
6405
19002
78889
55781
55528
57228
20010
5969
4729
19025
42735
85570
16438
4968
1558
1660
836
2033
706
370
269
20
24
Countries sharing
borders
PT
-
FR
-
PT
PT
PT
-
-
-
-
-
-
AD, FR
FR
-
-
-
-
-
-
-
-
MA
MA
Table 1.1:
Overview of Spain’s River Basin Districts
* Area in Spanish territory.
Source:
WISE, River Basin Management Plans and information provided by Spain (2014)
4
4
References to 'information provided by Spain in 2014' in this document relate to information received in the context of
the bilateral meeting held between the Commission services and the Spanish authorities on 10 November 2014 and its
follow-up.
6
kom (2015) 0120 - Ingen titel
1925138_0007.png
Name international
river basin
Miño/Minho
Duero/Douro
Guadiana
Ebro
Segre (Sub-Basin
Ebro/Rhone)
Catalan
Lima/Limia
Tajo/Tejo
Garonne
Nive (Sub-Basin Adour-
Garonne RBD)
Nivelle (Sub-Basin
Adour-Garonne RBD)
Bidasoa (Sub-Basin
Adour-Garonne RBD)
Ceuta
Melilla
National RBD
ES010
ES020
ES040
ES091
ES091
ES100
ES010
ES030
ES017/ES091
ES017
ES017
ES017
ES150
ES160
Countries
sharing
borders
PT
PT
PT
AD, FR
AD, FR
FR
PT
PT
FR
FR
FR
FR
MA
MA
Co-ordination category
4
2
km²
%
km² %
16226 95.0
78859 80.7
55454 82.7
85534 99
18750
16438
1326
55772
555
121
70
689
95.2
99,9
52.9
78.3
0.7
19.0
12.0
97.0
20
24
100
100
Table 1.2:
Transboundary river basins by category (see CSWD section 8.1) and % share in Spain
5
Category 1: Co-operation agreement, co-operation body, RBMP in place.
Category 2: Co-operation agreement, co-operation body in place.
Category 3: Co-operation agreement in place.
Category 4: No co-operation formalised.
Source:
EC Comparative study of pressures and measures in the major river basin management plans in the EU, and
Information provided by Spain.
Regarding the shared catchments with other MS/third countries, the following overview
information can be provided:
With Portugal – Miño (ES010), Duero (ES020), Tagus (ES030) and Guadiana (ES040);
regulated by the Albufeira Convention
6
.
With France – Cantábrico Oriental (ES017), Ebro (ES091) and Catalonia (ES100). Since 2003
annual co-ordination meetings have taken place, and since 2006 the Toulouse Agreement is in
place according to Art 3 WFD. ES017 provides information that there is no need to establish a
common international RBMP. A Co-ordination Committee for the follow-up of the WFD
implementation and water management in transboundary rivers is in place.
With Andorra – Ebro (ES091).
With Morocco – Ceuta (ES150) and Melilla (ES160).
5
Categorisation determined under the EC Comparative study of pressures and measures in the major river basin
management plans in the EU (Task 1b: International co-ordination mechanisms).
6
http://www.cadc-albufeira.eu/
7
kom (2015) 0120 - Ingen titel
1925138_0008.png
STATUS OF REPORTING AND COMPLIANCE
At the time of compiling this report, Spain has adopted and reported the 25 RBMPs to the European
Commission (by year of adoption): ES100 (2011); ES014, ES060, ES063 and ES064 (2012);
ES010, ES017, ES018, ES020, ES040, ES050, ES110, ES150, and ES160 (2013); and ES030,
ES070, ES080 and ES091 (2014)
7
and ES120, ES122, ES123, ES124, ES125, ES126 and ES127
(2015). Full details are provided in the following table.
RBD
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
RBMP Date of
Adoption
19/04/2013
14/09/2012
07/06/2013
07/06/2013
21/06/2013
11/04/2014
17/05/2013
17/05/2013
14/09/2012
14/09/2012
14/09/2012
11/07/2014
11/07/2014
28/02/2014
05/09/2011
8
06/09/2013
01/04/2015
22/04/2015
16/11/2015
06/05/2015
05/06/2015
01/04/2015
07/05/2015
27/09/2013
27/09/2013
RBMP Date of
Reporting
28/06/2013
28/06/2013
12/02/2014
21/10/2013
15/11/2013
03/11/2014
01/07/2013
16/07/2013
01/08/2013
01/08/2013
28/06/2013
20/10/2014
05/11/2014
30/10/2014
24/02/2014
17/10/2014
22/06/2015
17/06/2015
04/02/2016
12/05/2015
22/06/2015
21/04/2015
17/07/2015
29/10/2014
29/10/2014
Table 2.1:
Adoption and reporting to the Commission of Spain's RBMPs.
Source:
RBMPs, Official Public Gazette and River Basin Autorities' websites, WISE and Information provided by
Spain (2014).
7
A full list is provided at:
http://www.magrama.gob.es/es/agua/temas/planificacion-hidrologica/planificacion-
hidrologica/planes-cuenca/default.aspx
8
The ES100 plan was definitely adopted by a royal decree on 5 September 2011 and published in the Spanish Official
Gazette (BOE) on 22 September 2011. Afterwards the decree approving the Catalan RBMP was annulled by the High
Court of Catalonia on 16 May 2013 on procedural grounds. The RBMP and the PoMs were adopted again by the
Regional Government on 23 December 2014. Adoption by the National Government is pending.
8
kom (2015) 0120 - Ingen titel
1925138_0009.png
A summary of the main strengths and weaknesses of the Spanish RBMPs is presented below:
Main strengths
There has been an extensive technical work carried out by the river basin authorities in the
preparation of the RBMPs.
The RBMPs are complete and structured documents, which generally include numerous
annexes with a significant amount of detailed information and background documents.
Quantitative aspects are considered, with water balances done for each RBD and ecological
flows calculated for many river stretches.
Significant efforts have been made to ensure a broad public participation in the process of
development of the RBMP.
All RBMPs have gone through a strategic environmental assessment.
Main weaknesses
The late approval of RBMPs
9
. Spain should ensure the timely adoption of the next RBMPs.
Further work is needed to ensure WFD is fully transposed in all intra-community RBDs.
No river, lake or transitional surface water bodies have been designated in the Canary
Islands without providing a proper justification, despite the existence of rivers and large
dams. No further work, such as monitoring, identification of pressures, classification of
status or the adoption of measures has been consequently developed.
The gaps on characterisation, the deficiencies in monitoring programmes and in the status
assessment methods have resulted in an important number of water bodies with unreliable
or unknown status. This undermines the whole planning process and compromises the
definition of the necessary measures and the achievement of environmental objectives.
Furthermore, environmental objectives are missing for a relatively high number of water
bodies, or are delayed until 3
rd
planning cycle (2027) without proper justification.
Quantitative management of water is linked to quality objectives through the establishment
of ecological flows in many river stretches, but these are generally not clearly linked to the
achievement of good status.
High number of new infrastructure projects are planned, but the conditions for application
of exemptions (WFD Article 4(7)) have not been included in the RBMPs and the potential
impacts on the status are generally not reflected in the environmental objectives of water
bodies.
Cost recovery instruments have not been adapted to the WFD requirements. As a
consequence, there is a lack of adequate incentives for efficient use of the resource and the
adequate contribution to the recovery from different users is not guaranteed. Environmental
9
On this subject see judgement of the EU Court of Justice of 4 October 2012 on case C-403/11 available at
http://curia.europa.eu/juris/liste.jsf?language=en&jur=C,T,F&num=C-403/11&td=ALL
9
kom (2015) 0120 - Ingen titel
1925138_0010.png
and resource costs are high but not included in the recovery. River basin authorities do not
have sufficient resources to exert an effective control of water uses in the RBDs.
Despite its importance for management and planning purposes, the register of water
abstractions is not yet completed in Spain. Metering of water uses should be generalised.
The consideration of water dependent protected areas should be improved. Specific
objectives, monitoring and measures need to be included in the RBMPs in order to ensure
the favourable conservation status of water-dependent protected habitats and species.
GOVERNANCE
River Basin Management Plans (RBMPs) – Structure, completeness, legal status
RBMPs are adopted by the Government through a Royal Decree, which is published in the Spanish
Official Gazette, except for the Canary Islands (RBDs ES12X), for which the RBMPs are finally
adopted by a Decree of the regional government. Regionally-managed RBDs are preceded by
approval by the Regional Government. The legal part of the RBMPs is therefore binding for third
parties.
The RBMPs consist of a package of documents including the main text (several hundreds of pages),
and a varying number and length of Annexes and Appendices, that sometimes include preparatory
or background documents (e.g. detailed characterisation studies of certain groundwater bodies
(GWB)), thus often amounting several thousands of pages. They are usually well structured, with
different degrees of technical detail between the main text and the Appendices.
Nonetheless, some information is missing or has not been identified in the screening assessment of
some of the RBMPs, such as the result of the public consultation and its integration in the RBMP;
links between pressures, objectives and measures; information at water body level (pressures,
status, objectives and measures); or the results of the tasks/studies carried out (e.g. status
classification by different quality elements, modelling exercises, cost-effectiveness analysis).
Consultation
Though Spain had previous experience in managing water at the river basin level and establishing
RBMPs, the WFD process started late in all RBDs.
The establishment of RBDs and competent authorities (due in 2003) was done late and the
Commission took Spain to Court
10
. The case was not closed until 2011.
Table 3.2.1 provides an overview of the dates of the WFD Article 14 consultation steps and the
dates of adoption of the RBMPs. The dates reflect the delay in implementation in respect to the
deadlines foreseen in the WFD.
Regarding the publication of the final RBMPs, the first plan (ES100) was formally approved on
02/09/2011, almost 2 years late compared to the deadlines set in the WFD (December 2009). The
rest of the RMPs have been approved since then, with increasing delay regarding the deadlines and
10
On this subject see judgement of the EU Court of Justice of 7 May 2009 on case C-516/07 available at
http://curia.europa.eu/juris/liste.jsf?language=en&jur=C,T,F&num=c-516/07&td=ALL
10
kom (2015) 0120 - Ingen titel
1925138_0011.png
the public consultation process (more than 2 years difference in many cases). The adoption of the
Canary Islands RBMPs (ES12X) has been completed during 2015.
Timetable, work
programme and
statement on
consultation measures
22/12/2006
26/07/2007
28/04/2008
26/07/2007
26/07/2007
26/07/2007
26/07/2007
26/07/2007
26/07/2007
02/07/2008
01/02/2008 and
22/05/2010
01/02/2008 and
22/05/2010
26/07/2007
26/07/2007
26/07/2007
01/11/2006
10/2006
03/2009
25/12/2009
20/05/2009
28/11/2008
12/03/2009
18/12/2009
30/10/2012
30/10/2012
28/06/2011
22/05/2010
15/05/2012
2011
01/12/2012
30/11/2012
Significant
water
management
issues
22/12/2007
31/07/2008
28/01/2009
31/07/2008
31/07/2008
31/07/2008
31/07/2008
31/07/2008
31/07/2008
28/05/2009
28/05/2009
28/05/2009
31/07/2008
18/12/2009
31/07/2008
01/12/2007
06/2007
21/12/2009
Final
adoption
RBMP
22/12/2009
19/04/2013
14/09/2012
07/06/2013
07/06/2013
21/06/2013
11/04/2014
17/05/2013
17/05/2013
14/09/2012
14/09/2012
14/09/2012
11/07/2014
11/07/2014
28/02/2014
02/09/2011
06/09/2013
01/04/2015
22/04/2015
16/11/2015
06/05/2015
05/06/2015
01/04/2015
07/05/2015
27/09/2013
27/09/2013
RBD
Due
dates
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
Draft RBMP
22/12/2008
15/12/2010
20/08/2010
04/05/2011
04/05/2011
15/12/2010
20/03/2013
25/05/2011
15/12/2010
22/05/2010
22/05/2010
22/05/2010
07/06/2013
07/08/2013
12/05/2012
16/12/2009
01/09/2008
09/11/2011
10/10/2013
04/12/2013
09/10/2013
05/05/2010
07/08/2012
09/08/2013
15/12/2012
28/12/2012
28/12/2012
Table 3.2.1: Timeline of the different steps of the consultation process
Source:
WISE, RBMPs and ES websites and Information provided by Spain (2014). Note that the dRBMP ES110 has
been consulted twice.
Though the timing of consultation has in general been delayed, all RBMPs have respected the 6
months required length of consultation during the drafting process, with ES124 being consulted for
9 months. All RBMPs provide details of the consultation process, and some (e.g. ES100, ES010,
ES020, ES050, ES080) publish also overviews and summary data on the key impact of public
consultation on the contents of the RBMP. During the consultation, usually several hundreds of
11
kom (2015) 0120 - Ingen titel
1925138_0012.png
formal comments have been received on the consulted documents, and many plans provide a sub-
classification of items within each of the comments. Some RBMPs (e.g. ES080, ES100) provide a
clear and transparent response on whether and how each individual comment has been integrated
within the plans, but others do not.
During the RBMP drafting process, many RBDs started significant processes of active involvement
directed at the public (e.g. brochures, campaigns), stakeholders (geographical, sector or topic
workshops) and other meetings. The efforts in ES091 to develop events at local level and in ES100
to draft plans/PoMs at river-stretch level should be noted.
Some RBMPs (e.g. ES091, ES110 – with two consultation periods) have significantly changed the
content of their draft versions, and changes in information, criteria and text have been reported for
several RBMPs, though not necessarily documented in WISE or corresponding summaries (e.g.
ES020).
All RBMPs have undergone a SEA process.
In addition to the formal public consultation, the Spanish legislation foresees a number of
consultation and decision making steps before adoption of the RBMPs. The Committee of
Competent Authorities
11
, aimed at promoting co-operation between national, regional and local
organisations in the application of the WFD, approves the RBMPs before submission to the RBD
Water Advisory Boards for their opinion. These RBD Boards are composed by representatives of
authorities, water users and stakeholders
12
. It should be noted that despite a majority supporting the
plans, significant votes against the RBMPs occurred in ES050 (by the Regional Government of
Andalusia) and ES091 (by the Regional Government of Catalonia) at the respective RBD Board
meetings (see Figure 3.2.1). Reports of the Board meetings are neither included in the RBMPs nor
available at the RBDs websites.
As a result of the ruling of the European Court of Justice of 7 May 2009, Royal Decree 29/2011 created an additional
coordination body for the purpose of elaborating the RBMP for the Cantábrico Oriental RBD ES017, composed of
representatives of Central Administration and Basque Country regional Administration.
12
11
There is also a National Water Advisory Board which informs the plans before adoption by the Government.
12
kom (2015) 0120 - Ingen titel
1925138_0013.png
Figure 3.2.1:
Support within the National Water Advisory Board to RBMPs
Source:
Information provided by Spain (2014).
CHARACTERISATION OF RIVER BASIN DISTRICTS
Typology of Surface Water
The general methodology for the establishment of types and reference conditions has been
regulated by the IPH (section 2.2.1.3 and 2.2.1.4 and Annexes II and III) following a spatially-
based technical proposal by Spanish Research Centre CEDEX. The IPH establishes 32 river types,
30 lake types, 13 transitional water types and 20 coastal water types.
Additional types have been established by River Basin Authorities (RBAs) (e.g. coastal types in
ES070 and river types in ES110 - this latter still in process). The following number of surface water
(SW) types has been considered in the RBMPs:
13
kom (2015) 0120 - Ingen titel
1925138_0014.png
RBD
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
Sum
Rivers
9
7
6
12
17
27
14
17
13
7
6
10
12
9
15
2
0
0
0
0
0
0
0
0
1
32
Lakes
3
0
3
5
7
8
12
12
7
4
1
4
7
19
12
0
0
0
0
0
0
0
0
0
0
30
Transitional
1
3
3
6
Coastal
1
7
1
3
1
3
4
2
3
2
2
2
3
4
0
0
0
0
0
0
0
0
0
13
2
2
4
3
2
5
6
1
8
4
5
4
5
7
4
4
3
2
2
2130
Table 4.2.1:
Surface water body types at RBD level
Source:
WISE and Information provided by Spain.
For river type water bodies, system B has been chosen for all categories based on a variety of data
(hydrological, geological, physical, climatic, etc.) and it is not clear if they have been tested against
biological data. Occasionally, system A has also been used.
Tabulated values for reference conditions and class boundaries have been established by the IPH
for rivers but not for all surface water body types. The IPH does not include values for lake and
transitional water body types
13
. It is also unclear how the IPH reference conditions and class
boundaries have been established. After the IPH approval, the Spanish Ministry of the Environment
carried out complementary work to preliminarily establish reference conditions for additional types.
13
Spain informed in 2014 that some RBDs have developed reference conditions and class boundaries for additional
quality elements.
14
kom (2015) 0120 - Ingen titel
Delineation of Surface Water Bodies
General criteria for the delineation of water bodies are also included in the IPH (section 2.2.1.1),
again based on work performed by CEDEX (river and lake water categories). Each RBD has
applied the criteria depending on its particular conditions.
The following overview table 4.3.1 gives information on the number of water bodies. ES122 and
ES123 share a common coastal water body (Eastern Islands), but this has only be assigned to
ES122 in the table 4.3.1 (and in the following ones) to avoid double counting.
15
kom (2015) 0120 - Ingen titel
1925138_0016.png
Surface Water
RBD
Number
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
Total
270
411
109
250
696
308
249
392
133
65
48
90
304
700
261
94
0
0
0
0
0
0
0
0
1
4.381
Rivers
Average
Length (km)
16.49
10.63
14.23
15.39
19.95
29.44
35.95
27.68
16.79
17.19
19.57
19.13
18.60
19.10
15.28
6.16
0
0
0
0
0
0
0
0
5.35
19.76
Lakes
Average Area
Number
(sq km)
3
0
11
7
14
16
58
35
8
10
5
6
19
110
27
0
0
0
0
0
0
0
0
0
0
329
0.48
0
0.41
0.23
0.89
0.95
1.05
27.11
2.59
0.23
0.25
6.39
2.22
0.74
0.15
0
0
0
0
0
0
0
0
0
0
3.76
4
13
7
10
11
1
4
8
25
36
0
0
0
0
0
0
0
0
0
180
12.85
10.64
2.14
12.26
14.33
25.17
3.69
19.42
0.08
1.23
0
0
0
0
0
0
0
0
0
5.54
2
3
27
12
4
17
22
3
33
42
6
5
6
11
5
4
3
3
3
260
31.31
163.56
76.53
44.65
43.69
71.13
97.09
103.40
48.47
89.18
549.90
444.70
375.70212
72.68
55.00
41.00
261.48
13.48
3.54
105.88
Transitional
Average Area
Number
(sq km)
4
22
14
21
6.33
4.77
3.46
4.37
Coastal
Average Area
Number
(sq km)
1
29
4
15
15.98
110.26
144.43
103.75
Groundwater
Number
6
18
28
20
64
24
20
60
67
14
4
63
90
105
39
90
10
4
1
4
5
5
3
1
3
748
Average Area
(sq km)
2934.1
729.5
205.0
693.6
1232.6
910.1
1124.1
624.6
155.2
304.5
257.5
243.8
453.6
521.5
288.6
52.6
155.8
413.2
846.1
508.2
142.0
73.6
89.7
11.2
5.0
482.8
Table 4.3.1:
Surface water bodies, groundwater bodies and their dimensions
Source:
WISE, RBMPs and information provided by Spain (2014).
kom (2015) 0120 - Ingen titel
1925138_0017.png
Spain has delineated 4,381 River Water Bodies (RWB), 329 Lake Water Bodies (LWB), 180
Transitional Water Bodies (TWB) and 260 Coastal Water Bodies (CWB). The average length of
RWB is 19 km, and the average surface of LWB is 3 km
2
, of TWB 5 km
2
and of CWB 105 km
2
.
Significant larger averages have been identified for RWBs in ES030, ES040 and ES050. The
reasons for such differences are not clear.
Note that in the Canary Islands - following the statement of the regional Water Planning Instruction
(Decree 165/2015) - no river, lake or transitional water bodies have been designated, despite the
existence of rivers
14
, large dams
15
and protected areas
16
. For example, in ES 125, both Barranco de
las Angustias and Barranco del Agua could be examples of significant watercourses, candidates to
be classified as SWB. Note that the whole island is a Biosphere Reserve.
Spain has delineated 748 GWB, with an average size of 482 km
2
; a significantly larger average size
has been applied in ES010. The reasons for these differences are not clear.
The minimum size of small water bodies has been set at 5 km length for RWB, 0.5 km
2
for LWB
(or 0.08 km
2
if the lake is deeper than 3 metres, or whatever dimensions if protected in the Ramsar
list), 0.5 km
2
for TWB and 5 km length of coastline for CWB.
Following the National CEDEX guidance, minor lakes are frequently aggregated to conform a
LWB (e.g. lagoon complex), thus reflecting much better the large number of small LWB in Spain.
Similarly, small river stretches of different typology may be added to connecting larger ones.
In the case of TWB, limits are established following geographical parameters (public coastal
maritime domain), but consider also chemical aspects such as the salinity gradient in the river, and
the penetration of freshwater into the sea, and other criteria associated with the description of the
status of the TWB.
Identification of significant pressures and impacts
The identification of the pressures and impacts of human activity on water bodies was done for the
first time in the context of the IMPRESS study on the basis of the “Guidance to identifying
pressures and impact analysis in surface waters (2005)” (hereinafter in this chapter referred to as
the Guidance). This study included the identification and the assessment of pressures and impacts
associated with point and non-point pollution, significant water withdrawals and returns, regulation
works, hydromorphological alterations, and other significant anthropogenic impacts on water
bodies. The approach relied first on a qualitative assessment and, in a second stage, on a
quantitative assessment based on a simplified model. The objective of this study was to identify the
water bodies at risk of failing the WFD environmental objectives.
For the purpose of the qualitative assessment, the Guidance included thresholds of significance for
the various pressure categories. The impact was estimated or measured and assessed as "confirmed"
"probable", "no impact" or "no data". On this basis the final assessment of risk of failing
14
15
E.g. RBMP ES127 refers to one river basin with 13 km2, this means above the WFD thresholds for being considered
The 2006 Art.5 Analysis informs about 116 large dams with 100 hm3 storage capacity. The largest capacity exists in
ES120 followed by ES124; including in ES120 the large Soria dam with 15hm3 used storage capacityand a watershed
of 32 km2.
16
E.g. the Natura 2000 Standard Data Form for ES0000043 (Caldera de Taburiente) refers to its “abundance of springs
and water courses”.
17
kom (2015) 0120 - Ingen titel
1925138_0018.png
environmental objectives was established, which depended on the characteristics of each water
body.
The 2008 IPH
17
, on the basis of which the RBMPs were to be developed, included further
thresholds for the purpose of including a comprehensive inventory of pressures in the RBMPs. The
link to significance in terms of risk, however, is no longer evident, as there is no reference to
impact or risk assessment in the IPH. Indeed the Spanish legislation (RPH, IPH) does not require
for surface water the identification of water bodies at risk of failing the environmental objectives
due to significant pressures. According to the WFD this risk assessment should be based on all
available information on pressures, impacts and status as well as trends in the water uses. The result
of this assessment should then be used to inform the design of the monitoring programmes and the
programmes of measures. The risk assessment is essential to complement the information on status
gathered in the previous cycle, to identify potential risk of deterioration of water bodies due to
increasing pressures and to target effectively the monitoring efforts.
Abstractions larger than 20000 m
3
/yr are defined as significant. Cumulative abstractions in rivers
are being dealt with by assessing upstream abstractions compared with natural flows, considering a
40% (or other RBD-specific) threshold as significant. Prolonged drought periods are considered as
the natural flow is calculated using long term averages.
Thresholds for the inventory of hydromorphological pressures (dams, transfers, dikes, etc.) are
defined in the IPH. Other pressures like the introduction of invasive species, polluted sediments, or
land drainage (or angling, recreation, ES020) are listed for identification, but no guidance is given
for when considering them as “significant” pressures and they are judged on a case by case basis at
RBD level.
The IPH establishes a list of categories of point and diffuse sources that need to be included in the
inventory. Thresholds are provided for a few of these categories (for example discharges from
aquaculture facilities larger than 100000 m
3
/yr)
18
. Criteria for the main diffuse sources are generally
not given in the IPH, but have been defined by each RBMPs. However, the method used to
establish the significance is not clear.
In general, for the preparation of the RBMPs, and in order to consider cumulative effects, the
inventory of pressures was used as input for modelling tools.
The identification of (significant) impacts is generally well linked to pressures (e.g. water uses)
when dealing with water abstractions and point source pollution, and some plans provide
comprehensive overviews on all pressures related to water bodies (e.g. ES080). In the case of
diffuse pollution (e.g. ES070) or hydromorphological alterations (e.g. ES030, ES070), the picture is
often more complicated, and no clear relationship with impacts has been described for these
pressures within many RBMPs at water body level.
Significant point source pressures have been identified for more than 1750 water bodies, namely for
ES014, ES018, ES020, ES050, ES091 and ES100 which are RBDs with significant urban and
industrial developments.
Significant diffuse source pressures have been identified in more than 1200 water bodies. The
pressures are particularly prevalent in the RBDs ES014, ES080, ES091 and ES100. Some
17
18
It is not clear to what extent the Guidance and the IPH was used in intra-community RBDs.
According to information provided by Spain, the application of thresholds has been done on a case by case basis.
18
kom (2015) 0120 - Ingen titel
agricultural land-use intensive RBDs, however, like ES040 and ES070 have not reported significant
diffuse source pressures.
High percentages of water bodies subject to significant water abstraction have been identified in
one northern river basin district (ES018) and some southern river basin districts (ES040, and
ES050). Despite water quantity being a significant problem in some of the river basins, these have
not identified large numbers of water bodies affected by significant abstraction pressures (e.g.
ES063, ES064, ES070, ES080, ES091, and ES110).
According to the Spanish authorities, this apparent mismatch between the relatively low
percentages of water bodies reported as subject to significant pressures and the severity of the
perceived problem is, at least in part, due to the fact that Spain reported to WISE only the result of
the qualitative pressure and impact assessment, which is not accurate in case of diffuse sources of
pollution or water abstraction. However, this casts doubt about the reliability of the thresholds of
significance used for the pressure inventories and the usability of the information reported. It is not
clear why there are so large differences across the different basins if they were supposed to use the
same thresholds (as included in the IPH). And it is also unclear why Spain did not report to WISE
the result of the final and complete assessment of pressures and impacts, although it may have to do
with the fact that the risk assessment resulting from the pressure and impact analysis is not required
by the Spanish legislation, as explained above, and is therefore wrongly seen as a one-off exercise
that was due only in 2005 as part of the preparation of the first RBMP.
Significant water flow regulations and hydromorphological alterations have been identified for
more than 1550 surface water bodies most likely caused by the high number of large dams in Spain
(1350), and many other hydromorphological alterations. A high proportion of surface water bodies
(>60%) affected by such pressures can be found in ES017, ES018, and ES020. Relatively low
values (<20%) have been reported for ES010, ES014, ES030, ES050, ES060, and ES091, despite
the large number of dams and river infrastructure existing in most of these basins. Again, there is
no plausible explanation for these large differences unless approaches used in the RBDs were
significantly different.
River management as a significant pressure appears to be interpreted in different ways in the RBDs,
as a few of the RBMPs report significant pressures (e.g. ES017, ES018) and others no single
significant pressure (e.g. ES010, ES020, ES030, ES040, ES063, ES064, ES080, ES091 and
ES100).
Transitional and coastal water management have been identified as significant pressures for 117
water bodies (40 % of TW and CW). Significant pressures have been reported mainly for ES018,
ES060, and ES070. No such pressures were identified for ES010, ES040, ES050, ES063 ES064,
ES080, ES091 and ES110, though ports and navigation, as well as recreational activities and sand
dredging are present in the RBDs, and despite the fact that inventories of pressures include as
relevant connectivity alterations, channelling, sluices, land occupation, dredging and beach
regeneration.
Other pressures have been identified for a large number of surface water bodies (more than 1000),
in particular in ES014, ES018, ES080 and ES100.
No pressures have been identified in more than 1900 Spanish surface water bodies. ES018 and
ES070 report only less than 20 surface water bodies with no significant pressure; and large numbers
of surface water bodies with no pressures are reported from ES010, ES030, ES050 and in particular
ES091 (77% of the surface water bodies have no pressure). When compared to the status, it is
nonetheless surprising that in ES030, ES091 and ES110 there appears to be a much lower number
19
kom (2015) 0120 - Ingen titel
of surface water bodies in good status in 2009 than the number of water bodies with no pressure
(ES030: 243 water bodies without pressure vs. 170 water bodies in good status; ES091: 635 water
bodies without pressure vs. 226 water bodies in good status; and ES110: 129 water bodies without
pressure vs. 73 water bodies in good status). This comparison indicates an inconsistency in the
planning process, either within the identification of pressures or the classification of status. And
again, figures show significant differences in approach that questions the effectiveness of the
harmonisation efforts.
There is a significant difference between data included in many of the RBMPs and provided via
WISE, hampering a good understanding of the challenges faced in the RBDs, e.g. ES020 RBMP
develops a significant analysis of diffuse pollution, meanwhile according to WISE no water body is
affected by such type of pressures. This may be due to the fact that only the qualitative analysis was
reported but it is unclear and confusing.
20
kom (2015) 0120 - Ingen titel
1925138_0021.png
RBD
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
No pressures
Point source
Diffuse source
Water abstraction
Flow regulations
and morphological
alterations
River management
Transitional and
coastal water
management
Other
morphological
alterations
Other pressures
No.
200
63
25
12
160
243
36
210
20
54
38
14
64
635
54
129
1
2
2
5
2
3
1
%
71.9
13.6
18.1
4.1
22.5
75.0
11.5
47.4
11.4
55.7
55.9
12.3
18.3
77.3
15.6
75.0
0
20
33.33
18.18
100
50
100
25.0
No.
58
178
75
177
264
67
136
163
119
33
22
38
122
147
159
18
5
4
4
6
0
2
0
2
%
20.9
38.5
54.3
60.4
37.2
20.7
43.5
36.8
68.0
34.0
32.4
33.3
35.0
17.9
46.0
10.5
83.33
80
66.67
54.55
0
50
0
50.0
No.
34
181
33
17
92
18
23
78
87
40
25
73
201
155
117
32
1
1
2
6
0
1
0
0
%
12.2
39.2
23.9
5.8
13
5.6
7.3
17.6
49.7
41.2
36.8
64.0
57.6
18.9
33.8
18.6
16.67
20
33.33
54.55
0
25
0
0.0
No.
49
3
74
189
74
45
166
147
86
26
17
40
78
39
62
9
0
0
0
0
0
0
0
0
%
17.6
0.6
53.6
64.5
10.4
13.9
53.0
33.2
49.1
26.8
25.0
35.1
22.3
4.8
17.9
5.2
0
0
0
0
0
0
0
0.0
No
47
54
89
198
439
20
113
84
32
35
26
34
140
120
109
11
0
0
0
8
0
0
0
2
%
16.9
11.7
64.5
67.6
61.8
6.2
36.1
19.0
18.3
36.1
38.2
29.8
40.1
14.6
31.5
6.4
0
0
0
72.7
0
0
0
50.0
No.
0
22
77
156
0
0
0
57
12
0
0
32
0
0
0
10
0
0
0
0
0
0
0
0
%
0.0
4.8
55.8
53.2
0.0
0.0
0.0
12.9
6.9
0.0
0.0
28.1
0.0
0.0
0.0
5.8
0
0
0
0
0
0
0
0.0
No.
0
18
12
31
%
0.0
3.9
8.7
10.6
No.
0
0
0
0
0
0
%
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.6
4.9
0.0
0
0
0
0
0
0
0
0.0
No.
30
277
59
175
1
0
68
29
11
1
10
42
145
1
185
13
0
0
0
0
0
0
0
0
%
10.8
60.0
42.8
59.7
0.1
0.0
21.7
6.5
6.3
1.0
14.7
36.8
41.5
0.1
53.5
7.6
0
0
0
0
0
0
0
0.0
0
0
28
0
0
13
0
0
14
0
0
0
0
0
0
0
0
1
0.0
0.0
16.0
0.0
0.0
11.4
0.0
0.0
4.0
0.0
0
0
0
0
0
0
0
25.0
0
0
0
0
0
0
0
5
17
0
0
0
0
0
0
0
0
0
21
kom (2015) 0120 - Ingen titel
1925138_0022.png
RBD
No pressures
Point source
Diffuse source
Water abstraction
Flow regulations
and morphological
alterations
River management
Transitional and
coastal water
management
Other
morphological
alterations
Other pressures
No.
%
No.
%
No.
%
No.
%
No
%
No.
%
No.
%
No.
%
No.
%
Total
1958
38.2
1796
35.1
1118
21.8
1026
21.420.02
1554
30.3
365
7.12
117
2.3
22
0.4
1046
20.4
Table 4.4.1:
Number and percentage of surface water bodies affected by significant pressures.
Source:
WISE and information provided by Spain (2014). No data available for ES150.
22
kom (2015) 0120 - Ingen titel
1925138_0023.png
Figure 4.4.1:
Graph of percentage of surface water bodies affected by significant pressures
1 = No pressures
2 = Point source
3 = Diffuse source
4 = Water abstraction
5 = Water flow regulations and morphological alterations
6 = River management
7 = Transitional and coastal water management
8 = Other morphological alterations
9 = Other pressures
Source:
WISE. No data available for ES150.
Protected areas
More than 28800 Protected Areas have been reported for those RBDs with WISE data
available, an average of 5 Protected Areas per water body.
Of these, by far the largest number corresponds to the more than 21000 Protected Areas for
abstraction for drinking water, an average of 4.9 such Protected Areas per water body. The
Ebro (ES091) is the RBD with the largest number of such areas.
More than 1600 bathing water Protected Areas have been reported, mainly for ES014, ES060
and ES100.
More than 1100 areas protected for their habitats and more than 500 for their birds are
reported. They account for an average of 0.28 protected area for every water body, with
higher values in ES150, ES070, ES091 and ES030.
401 Nitrate Vulnerable Zones have been reported, 218 shellfish areas (mainly in ES014), and
462 UWWT Protected Areas (especially relevant for ES110 and ES100).
The information included in the RBMPs regarding Protected Areas usually refers to a list of
the Protected Areas, their classification, and an overview map of their location within the
RBD, displayed as points. Nonetheless, in general no information is provided on the
following features: the specific protection elements (e.g. shellfish, habitats and birds), the
23
kom (2015) 0120 - Ingen titel
conservation status of the protected area, the pressures or threats that affect the protected
area, and the overlap of Protected Areas with water bodies (e.g. for use in the delimitation of
water bodies). Exceptionally, some additional information might be found on specific
Protected Areas in the Appendices (e.g. ES040 regarding the Tablas de Daimiel protected
area and the underlying GWBs).
24
kom (2015) 0120 - Ingen titel
1925138_0025.png
Number of PAs
European Other
Article 7
Abstraction for
drinking water
RBD
National
Habitats
Shellfish
Nitrates
UWWT
6
2
12
8
36
53
19
13
3
3
3
7
30
29
113
125
2
3
6
1
1
4
1
0
0
4744
80
Bathing
Local
Birds
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
Total
754
2183
106
123
3518
476
1521
954
882
109
86
119
1980
7072
1292
80
30
0
35
5
11
5
21
2136
2
32
448
36
99
26
32
26
32
237
53
25
116
176
43
208
26
46
33
32
39
7
7
4
7
8
1766
1798
11
9
4
16
53
63
43
13
21
14
6
33
44
132
24
24
5
7
7
7
1
6
3
2
2
5435
50
0
7
0
3
2
0
11
12
10
3
2
0
0
11
66
0
8
8
9
14
21
15
23
16
3
3
0
1
4
15
19
0
20
37
36
79
78
85
61
38
70
25
19
73
83
292
56
71
38
10
83
142
80
152
0
0
0
0
39
0
0
0
8
0
261
316
15
0
7
16
0
0
1119
166
12
80
111
493
60
168
152
72
37
38
141
96
143
85
0
0
0
0
0
10
7
10
9
14
3
3
9
280
23
20
13
7
1
95
3
17
0
0
6
6
36
7
5
7
7
5
18
4
1081
2943
366
622
4237
791
1888
1245
1387
257
187
506
2708
7765
2162
659
113
83
056
107
38
67
29
17
31
2929
3293
49
0
0
1811
17
28
26
9
0
0
1
1
0
1
0
0
1854
2
1
0
0
418
1
0
218
0
0
127
0
0
159
2
0
1253
1264
Table 4.5.1:
Number of Protected Areas of all types in each RBD and for the whole country, for surface and
groundwater
19
Source:
WISE and Information provided by Spain.
19
This information corresponds to the reporting of Protected Areas under the WFD. More/other information
may have been reported under the obligations of other Directives.
25
Total
Fish
kom (2015) 0120 - Ingen titel
MONITORING
Some estimated 18000 monitoring sites have been reported by Spain, mainly for rivers and
groundwater bodies. The average number of monitoring sites per water body is 18 for GWB,
4.3 for CWB, 4(4) for TWB, 1.5 for RWB and 0.8 for LWB.
The information provided in the RBMPs and WISE regarding monitoring systems is not
always fully consistent. The RBMPs usually include the legal texts and maps showing the
monitoring sites, but no information on the methodology for the design of the network (e.g.
how pressure and impact analysis has been used to design the monitoring programmes).
Information on gaps or the status of implementation is also missing, although it appears a
significant issue given the high percentage of water bodies with unknown status (see next
chapter).
In fact, additional information gathered through the bilateral meeting held in November 2014
shows that monitoring programmes are not being implemented as reported and, due to
budgetary cuts, monitoring efforts have significantly reduced since 2010.
No information on operational monitoring sites has been provided for several RBDs/water
categories (ES010 and ES070 re CW; ES019, ES017, ES050 re LW operational sites; ES060,
ES063 and ES064 re GW quantitative sites). In some cases operational monitoring is not in
place because there are no water bodies identified at risk (ES040, ES050, ES120, ES122,
ES124, ES125, ES126, ES127 re CW; ES014 and ES018 re GW quantitative sites).
Generally, there is no or unclear information about grouping of water bodies (e.g. ES014,
ES017, ES018, ES040, ES100), despite larger number of RWB and LWB than monitoring
sites (in the overall figures). Differences exist between the number of water bodies monitored
for each quality element as indicated in the monitoring programmes and the number of water
bodies where information on status of each quality element is provided (e.g. ES017, ES018
for fish, ES020). The reason for these differences is not clear.
International monitoring programmes are set up for ES020 and ES040 with PT, and though
they have not been established for ES010 with PT or for ES017 with FR, transboundary
coordination is in place.
26
kom (2015) 0120 - Ingen titel
1925138_0027.png
RBD
Rivers
Surv
Op
Lakes
Surv
Op
Transitional
Surv
Op
Coastal
Surv
Op
Surv
Groundwater
Op
Quant
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
Total by type of site
Total number of
monitoring sites
20
Total number
compared to the
number of
corresponding WBs
86
519
165
505
819
466
165
274
48
30
30
101
154
358
301
63
0
0
0
0
0
0
0
0
0
4084
74
29
239
204
726
169
217
114
72
79
64
78
101
286
111
33
0
0
0
0
0
0
0
0
1
2597
0
0
6
8
32
20
18
4
3
4
5
6
20
40
29
0
0
0
0
0
0
0
0
0
0
195
280
0,8
0
0
0
3
2
4
17
0
2
4
6
1
17
22
7
0
0
0
0
0
0
0
0
0
0
85
5
68
25
187
0
0
8
41
9
21
42
7
31
42
28
31
0
0
0
0
0
0
0
0
0
545
800
4,4
0
0
4
73
0
0
6
20
9
21
42
0
12
41
7
20
0
0
0
0
0
0
0
0
0
255
0
70
11
106
0
0
5
9
46
35
16
31
226
36
31
72
186
50
46
30
0
44
18
7
0
0
1
64
0
0
0
0
18
35
16
104
113
36
16
15
117
20
0
0
0
0
0
7
44
51
38
53
486
214
121
155
98
75
42
45
218
1693
613
328
24
36
1
54
16
8
17
0
0
4430
18
0
21
0
140
59
33
78
98
36
15
368
99
0
867
123
36
13
0
5
14
3
17
0
0
2043
7356
9.8
8
51
28
36
555
202
207
266
0
0
0
172
287
377
446
126
60
36
1
36
6
5
17
0
0
2922
6681
1,5
4
0
8308 464
76
14351481
5,65.7
Table 5.2:
Number of monitoring sites by water category
Surv = Surveillance, Op = Operational, Quant = Quantitative
Source:
WISE and Information provided by Spain. There are large differences between the figures reported in
WISE and those corrected by Spanish authorities in 2014.
20
The total number of monitoring sites may differ from the sum of monitoring sites by type because some sites
are used for more than one purpose.
27
kom (2015) 0120 - Ingen titel
1925138_0028.png
Figure 5.1:
Maps of surface water (left) and groundwater (right) monitoring stations
River monitoring stations
Lake monitoring stations
Transitional water monitoring stations
Coastal water monitoring stations
Unclassified surface water monitoring stations
Groundwater monitoring stations
River Basin Districts
Countries outside EU
Source:
WISE (2010), Eurostat (country borders).
28
kom (2015) 0120 - Ingen titel
1925138_0029.png
Monitoring of Surface Waters
As shown in Figure 5.1 and Table 5.2, a monitoring programme has been set up.
The following monitoring design and implementation gaps relating to surveillance
monitoring can be identified for some of the RBDs
21
:
RW: Lack of monitoring QE1-2, QE1-4 and QE3-3
LW: Lack of monitoring in general (e.g. ES010), QE1-2, QE1-3, QE1-4, QE2, QE3-1
and QE3-3.
One important gap is the lack of monitoring for fish in most of the RBDs.
-
-
In terms of operational monitoring, information on the relationship between pressures,
impacts and monitored biological quality elements (BQEs) is scarce. It can be noted that in
ES017 and ES018 (RW) altered habitats due to abstractions or water flow are not
monitored/related to QE1-4. Information is lacking on how chemical pollution due to
atmospheric deposition will be detected, and it has not been considered in the design of
pollutant sampling in river basins.
Monitoring of sediments and biota is not specified in most of the RBMPs (e.g. ES017,
ES018, ES020, ES040, ES050, ES12) but additional information received from Spain
indicates that monitoring of sediments and biota is being undertaken in all RBDs.
Monitoring of Ground Waters
Significant monitoring networks have been built up to control groundwater status, in
particular based on the existing quantitative (piezometric) networks, and on average 10
monitoring sites exist per GWB. The monitoring network is particular dense in the areas with
intensive abstractions. The exception is ES060, ES063 and ES064 where no quantitative
monitoring is reported despite intensive water use. ES120 reports significant data gaps and
the lack of representativeness of the quantitative monitoring network to provide adequate
data. This data scarcity is a general problem in the whole Canarian archipielago, transfering
uncertainty to the status assessment and the settlement of objectives.
The groundwater chemical status monitoring programmes are designed in order to detect
significant and sustained upward trends in pollutants, even though a detailed justification is
lacking in the documents of the RBMPs.
Monitoring of Protected Areas
Monitoring in protected areas is required under WFD Article 8 and section 1.3.5 of Annex V.
A total of 679 monitoring sites have been reported for Protected Areas (PAs), this is one site
per 24 PAs. Most of them relate to bathing water, drinking water and nitrates.
21
The acronyms for the WFD Quality Elements follow the coding adopted for WISE: QE1 Biological, QE1-1
Phytoplankton, QE1-2 Other aquatic flora, QE1-3 Benthic invertebrates, QE1-4 Fish, QE1-5 Other species, QE2
Hydromorphological Quality Elements, QE2-1 Hydrological regime-rivers, QE2-2 River continuity, QE2-3
Morphological conditions-Rivers, QE2-4 Hydrological regime-lakes, QE2-5 Morphological conditions-lakes,
QE2-6 Morphological conditions-transitional and coastal waters, QE2-7 Tidal regime-transitional waters, QE2-8
Tidal regime-Coastal waters, QE3 Chemical and physico-chemical, QE3-1 General parameters, QE3-2 Priority
substances, QE3-3 Non priority specific pollutants, QE3-4 Other national pollutants.
29
kom (2015) 0120 - Ingen titel
1925138_0030.png
It is however not clear whether the reported monitoring sites are the result of just the
geographical overlay of monitoring sites and protected areas or are genuine sites for the
monitoring of the specific objectives of the relevant protected areas. Generally WISE
reporting identifies specific programmes for the monitoring of some types protected areas
(water bodies for the production of drinking water, bathing water, shellfish, etc.).
Regarding Drinking Water PA, monitoring covers only a very small percentage of the total
number of such PAs. It is unclear if all relevant parameters of the Drinking Water Directive
are monitored.
Monitoring of shellfish PAs is focused on shellfish as economically relevant species, and
covers heavy metals and toxic pollutants. It is reported for only 3 RBDs, although shellfish is
a relevant economic activity in other RBDs as well.
Monitoring in Nature PAs is not mentioned in the RBMPs. In general, RBMPs include only a
geographic reference of PAs under the Habitats Directive, without further referring to the
specific conservation status and/or objectives.
RBD
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
Surface
drinking
water
abstraction
55
104
104
103
143
109
63
50
33
0
0
8
16
132
45
76
0
0
0
0
0
0
0
4
0
Surface waters
Bathing
water
27
0
55
99
27
31
19
0
0
0
0
55
5
242
63
0
0
0
0
0
13
0
0
0
Fish
21
13
10
14
21
15
16
18
3
3
0
2
8
15
0
0
0
0
0
0
0
0
0
0
0
Birds
sites
0
0
0
16
*
32
0
0
0
0
58
-
-
19
54
0
0
0
0
0
0
0
0
0
Habitats
sites
0
0
0
78
*
56
0
0
0
0
63
-
-
0
82
0
0
0
0
0
0
0
0
0
Nitrates
0
138
0
0
38
*
67
0
0
0
0
28
107
NA
556
19
0
0
0
0
0
0
0
0
0
Shell-
fish
0
0
5
17
NA
NA
1
0
0
0
0
0
-
-
0
8
0
0
0
0
0
0
0
0
0
UWWT
7
0
5
0
151
*
0
0
0
0
0
0
-
25
99
41
0
0
0
0
0
0
0
0
0
Ground-
water
drinking
water
9
44
10
20
144
0
80
0
0
0
28
-
348
138
204
0
0
0
2
0
22
0
0
20
268
Table 5.3.1:
Number of monitoring stations in Protected Areas.
Source:
Information provided by Spain (2014). *: No network defined, but parameters are being controlled by
other monitoring networks.
30
kom (2015) 0120 - Ingen titel
1925138_0031.png
Figure 5.2:
Map of monitoring stations for Protected Areas
Source:
WISE (2010)
NB. For Groundwater, no information was supplied by ES020, ES030, ES040, ES050, ES060, ES063, ES064,
ES070, ES100 and ES110 on Protected Area Monitoring Points. For surface waters, information was supplied
about Drinking Water Protected Areas only for ES020, ES030, ES050, ES060, ES100 and ES110. Partial
information on other Protected Areas was supplied by ES018, ES040, ES063, ES064, ES070, ES080 and
ES091. The remaining RBDs supplied information on all types of Protected Area. Monitoring for Drinking
water PAs has been established in all RBDs, although the information is unclear/contradictory for ES014.
31
kom (2015) 0120 - Ingen titel
1925138_0032.png
22
RBD
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
Rivers
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
QE1.4 Fish
QE1.5 Other species
QE2 Hydromorphological QEs
QE1.2 Other aquatic flora
QE1.2.3 Macrophytes
QE1.2.4 Phytobenthos
QE1.3 Benthic invertebrates
QE1.1 Phytoplankton
22
The use of phytoplankton as an indicator in rivers is limited in Spain to reservoirs only.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
QE3.1 General Parameters
QE3.3 Non priority specific
Pollutants
QE3.4 Other national pollutants
QE1.1 Phytoplankton
QE1.2 Other aquatic flora
QE1.2.3 Macrophytes
QE1.2.4 Phytobenthos
QE1.3 Benthic invertebrates
QE1.4 Fish
-
-
QE1.5 Other species
QE2 Hydromorphological QEs
QE3.1 General Parameters
QE3.3 Non priority specific
pollutants
-
-
QE3.4 Other national pollutants
Lakes
kom (2015) 0120 - Ingen titel
1925138_0033.png
RBD
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
Table 5.1:
Quality elements monitored -
Source:
Information provided by Spain (2015).
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
QE1.1 Phytoplankton
QE1.2 Other aquatic flora
QE Monitored
-
-
-
-
-
-
-
-
-
-
-
QE1.2.1 Microalgae
-
-
-
-
-
-
-
-
-
-
-
QE1.2.2 Angiosperms
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
QE1.4 Fish
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
QE1.5 Other species
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
QE3.1 General Parameters
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
QE1.1 Phytoplankton
-
-
QE1.2 Other aquatic flora
-
-
-
QE1.2.1 Microalgae
-
-
-
QE1.2.2 Angiosperms
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
QE1.4 Fish
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
QE1.5 Other species
-
-
-
-
QE3.1 General Parameters
-
-
-
-
-
-
-
-
-
-
QE Not monitored
Not Relevant
QE1.3 Benthic invertebrates
Transitional
QE2 Hydromorphological QEs
QE3.3 Non priority specific
pollutants
QE3.4 Other national pollutants
QE1.3 Benthic invertebrates
Coastal
QE2 Hydromorphological QEs
QE3.3 Non priority specific
pollutants
QE3.4 Other national pollutants
kom (2015) 0120 - Ingen titel
STATUS
The ecological status of natural SWBs presented in the RBMPs shows that 43% are either in
high or good status. Several RBDs have a relatively high proportion (>15%) of water bodies
in high ecological status (ES010, ES014, ES018, ES050, ES070) or in good status (e.g.
ES030, ES050 and ES060).
A significant number/proportion (>5%) of water bodies in bad ecological status has been
identified in some RBDs (ES030, ES040, ES050, ES060, ES063 and ES070).
The overall number (727 WBs) and proportion (17%) of water bodies with unknown
ecological status is very high; and in particular the following RBDs should be mentioned:
ES014, ES063, ES064, ES080, ES091, ES100, ES110, ES123; ES091 presents the largest
number of water bodies with unknown ecological status (322 water bodies).
Large differences exist in the status results between RBDs. The following shows the
percentage of natural SWB in good or better status in some of the main RBDs:
ES030 Tagus
ES050 Guadalquivir
ES060 Andalucía Med
ES070 Segura
ES080 Jucar
ES091 Ebro
ES040 Guadiana
ES020 Duero
61
59
54
48
42
34
28
21
There is no plausible explanation for these differences other than the lack of harmonisation of
the status assessment. The figures question the reliability of the status assessments and the
use that has been made of the EU intercalibration results.
34
kom (2015) 0120 - Ingen titel
1925138_0035.png
RBD
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
TOTAL
Total
227
422
101
258
620
198
244
325
130
67
51
84
289
705
268
158
5
5
55
6
5
4
3
2
2
4184
High
No.
69
74
4
51
28
10
6
52
11
0
2
13
3
71
5
22
1
0
0
0
0
0
0
0
0
422
(%)
30,4
17,5
4,0
19,8
4,5
5,1
2,5
16,0
8,5
0,0
3,9
15,5
1,0
10,1
1,9
13,9
20,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
10,1
Good
No.
101
137
49
143
105
111
63
140
60
13
16
28
120
169
62
47
4
5
05
6
5
4
3
2
2
1400
(%)
44,5
32,5
48,5
55,4
16,9
56,1
25,8
43,1
46,2
19,4
31,4
33,3
41,5
24,0
23,1
29,7
80,0
100,0
83,3
100,0
100,0
100,0
100,0
100,0
100,0
33,5
Moderate
No.
37
67
29
51
441
46
131
71
37
6
15
25
61
107
76
12
0
0
0
0
0
0
0
0
0
1212
(%)
16,3
15,9
28,7
19,8
71,1
23,2
53,7
21,8
28,5
9,0
29,4
29,8
21,1
15,2
28,4
7,6
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
29,0
Poor
No.
13
19
15
7
39
9
25
33
11
16
5
6
19
29
26
17
0
0
0
0
0
0
0
0
0
289
(%)
5,7
4,5
14,9
2,7
6,3
4,5
10,2
10,2
8,5
23,9
9,8
7,1
6,6
4,1
9,7
10,8
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
6,9
2
3
2
3
7
10
19
29
9
5
1
12
14
7
12
4
0
0
0
0
0
0
0
0
0
Bad
No.
(%)
0,9
0,7
2,0
1,2
1,1
5,1
7,8
8,9
6,9
7,5
2,0
14,3
4,8
1,0
4,5
2,5
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
3,3
Unknown
No.
5
122
2
3
0
12
0
0
2
27
12
0
72
322
87
56
0
0
50
0
0
0
0
0
0
722
(%)
2,2
28,9
2,0
1,2
0,0
6,1
0,0
0,0
1,5
40,3
23,5
0,0
24,9
45,7
32,5
35,4
0,0
0,0
100,00
0
0,0
0,0
0,0
0,0
0,0
0,0
17,3
139
Table 6.1:
Ecological status of natural surface water bodies
Source:
WISE and RBMPs; information provided by Spain (2014).
Regarding the ecological potential of HMWB or AWB, 32% is evaluated as high or good
status overall, with significant differences between low values (<15%; ES100) and high
percentages (approx. 50%; ES010, ES050, ES070). 185 water bodies still have unknown
status (19%), with especially significant high values in ES091 (110 water bodies, 95%).
35
kom (2015) 0120 - Ingen titel
1925138_0036.png
RBD
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
TOTAL
Total
51
40
37
35
90
126
69
118
45
30
17
30
60
116
78
14
1
0
1
5
0
0
0
1
2
966
High
No.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
0
2
-
-
-
0
0
2
(%)
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
-
0,0
40,0
-
-
-
0,0
0,0
0,2
No.
25
11
7
15
28
49
18
63
20
9
7
14
26
0
11
4
0
-
0
2
-
-
-
0
0
Good
(%)
49,0
27,5
18,9
42,9
31,1
38,9
26,1
53,4
44,4
30,0
41,2
46,7
43,3
0,0
14,1
28,6
0,0
-
0,0
40,0
-
-
-
0,0
0,0
32,0
Moderate
No.
15
20
15
12
55
32
17
32
16
11
7
11
9
4
29
1
0
-
0
0
-
-
-
0
0
286
(%)
29,4
50,0
40,5
34,3
61,1
25,4
24,6
27,1
35,6
36,7
41,2
36,7
15,0
3,4
37,2
7,1
0,0
-
0,0
0,0
-
-
-
0,0
0,0
29,6
No.
9
3
8
2
5
25
8
16
1
3
0
2
7
2
14
1
0
-
0
0
-
-
-
0
1
Poor
(%)
17,6
7,5
21,6
5,7
5,6
19,8
11,6
13,6
2,2
10,0
0,0
6,7
11,7
1,7
17,9
7,1
0,0
-
0,0
0,0
-
-
-
0,0
50,0
11,1
No.
2
3
6
4
1
12
12
7
8
0
0
2
4
0
15
0
0
-
0
0
-
-
-
1
0
77
Bad
(%)
3,9
7,5
16,2
11,4
1,1
9,5
17,4
5,9
17,8
0,0
0,0
6,7
6,7
0,0
19,2
0,0
0,0
-
0,0
0,0
-
-
-
100,0
0,0
8,0
Unknown
No.
0
3
1
2
1
8
14
0
0
7
3
1
14
110
9
8
1
-
1
1
-
-
-
0
1
185
(%)
0,0
7,5
2,7
5,7
1,1
6,3
20,3
0,0
0,0
23,3
17,6
3,3
23,3
94,8
11,5
57,1
100,0
-
100,0
20,0
-
-
-
0,0
50,0
19,2
309
107
Table 6.2:
Ecological potential of artificial and heavily modified water bodies
Source:
WISE and RBMPs; information provided by Spain.
36
kom (2015) 0120 - Ingen titel
1925138_0037.png
Regarding the chemical status of natural SWB, a number of RBMPs have classified a large
proportion of water bodies in good status. Some RBDs have significant work to do to
improve the assessment of chemical status of natural SWBs (ES064, ES063). In several other
RBDs a significant number of water bodies still need to be classified (ES010, ES018, ES091
y ES110 with > 75% unknown), thus the status assessment can be considered as insufficient
to inform adequately the rest of the WFD planning process.
RBD
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
TOTAL
Total
227
422
101
258
620
198
244
325
130
67
51
84
289
705
268
158
5
5
5
6
5
4
3
2
2
4184
Good
No.
39
356
62
62
599
192
215
282
116
30
22
77
159
0*
140
0
2
5
0
6
5
4
3
0
2
2378
%
17,2
84,4
61,4
24,0
96,6
97,0
88,1
86,8
89,2
44,8
43,1
91,7
55,0
0,0
52,2
0,0
40,0
100,0
0,0
100,0
100,0
100,0
100,0
0,0
100,0
56,8
No.
7
34
9
4
21
6
2
11
2
10
15
7
8
32
14
0
0
0
0
0
0
0
0
0
0
182
Poor
%
3,1
8,1
8,9
1,6
3,4
3,0
0,8
3,4
1,5
14,9
29,4
8,3
2,8
4,5
5,2
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
4,3
No.
181
32
30
192
0
0
27
32
12
27
14
0
122
673
114
158
3
0
5
0
0
0
0
2
0
1624
Unknown
%
79,7
7,6
29,7
74,4
0,0
0,0
11,1
9,8
9,2
40,3
27,5
0,0
42,2
95,5
42,5
100,0
60,0
0,0
100,0
0,0
0,0
0,0
0,0
100,0
0,0
38,8
Table 6.3:
Chemical status of natural surface water bodies
Source:
WISE and RBMPs; information provided by Spain (2014)
* The map on page 163 of the Ebro RBMP (figure 84) shows surface water bodies in good chemical status and it
is therefore inconsistent with the WISE reporting reflected on this table.
37
kom (2015) 0120 - Ingen titel
1925138_0038.png
A similar assessment can be made regarding the chemical status assessment of
AWB/HMWB. 60% are reported as being in good status but several RBDs include high
percentages of “unknown” status: ES010, ES018, ES080, ES091, ES110). ES091 reports as
unknown 114 out of 116 water bodies. These large percentages of water bodies with
unknown status undermine the subsequent planning process.
Good
No.
17
26
19
19
87
121
53
101
40
20
6
20
22
0
37
0
0
0
0
4
0
0
0
0
0
592
%
33,3
65,0
51,4
54,3
96,7
96,0
76,8
85,6
88,9
66,7
35,3
66,7
36,7
0,0
47,4
0,0
0,0
-
0,0
80,0
-
-
-
0,0
0,0
61,3
0
11
10
2
3
5
0
14
0
2
8
9
9
2
16
0
0
0
0
0
0
0
0
0
1
92
Poor
No.
%
0,0
27,5
27,0
5,7
3,3
4,0
0,0
11,9
0,0
6,7
47,1
30,0
15,0
1,7
20,5
0,0
0,0
-
0,0
0,0
-
-
-
0,0
50,0
9,5
Unknown
No.
34
3
8
14
0
0
16
3
5
8
3
1
29
114
25
14
1
0
1
1
0
0
0
1
1
282
%
66,7
7,5
21,6
40,0
0,0
0,0
23,2
2,5
11,1
26,7
17,6
3,3
48,3
98,3
32,1
100,0
100,0
-
100,0
20,0
-
-
-
100,0
50,0
29,2
RBD
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
Total
Total
51
40
37
35
90
126
69
118
45
30
17
30
60
116
78
14
1
0
1
5
0
0
0
1
2
966
Table 6.4:
Chemical status of artificial and heavily modified surface water bodies
Source:
WISE and RBMPs; information provided by Spain (2014).
According to information provided by the Spanish authorities, in general chemical
monitoring has been carried out in those water bodies receiving industrial discharges or
subject to potential discharges from use of pesticides in agriculture. For the rest good
chemical status has been assumed, or can be assumed in case they have been classified as
“unknown” status. However, this overlooks other relevant sources of chemical pollution such
as urban wastewater and atmospheric deposition.
38
kom (2015) 0120 - Ingen titel
The information on chemical status of GWB is much more complete, with only 8 water
bodies in “unknown” status, and 33% of these GWBs in poor status.
39
kom (2015) 0120 - Ingen titel
1925138_0040.png
RBD
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
Total
Good
No.
5
18
26
20
50
18
7
44
32
5
2
39
63
82
16
55
2
0
0
3
4
3
0
0
0
494
Poor
%
No.
1
0
2
0
14
6
13
16
35
7
2
24
27
23
23
35
8
4
0
1
0
2
0
0
3
246
Unknown
%
16,7
0,0
7,1
0,0
21,9
25,0
65,0
26,7
52,2
50,0
50,0
38,1
30,0
21,9
59,0
38,9
80,0
No.
0
0
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
0
1
0
1
0
3
1
0
8
%
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
14,3
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
100,0
0,0
20,0
0,0
100,0
100,0
0,0
1,1
83,3
100,0
92,9
100,0
78,1
75,0
35,0
73,3
47,8
35,7
50,0
61,9
70,0
78,1
41,0
61,1
20,0
0,0
0,0
75,0
80,0
60,0
0,0
0,0
0,0
66,0
100,0
0,0
25,0
0,0
40,0
0,0
0,0
100,0
32,9
Table 6.5:
Chemical status of groundwater bodies
Source:
WISE and RBMPs; information provided by Spain (2014).
The data on quantitative status is also largely complete, with the important exception of
ES063, where a large percentage of groundwater bodies are in unknown quantitative status.
This is consistent with the lack of quantitative monitoring reported for this RBD.
Methodological approaches for determining GWB status are heterogeneous, not always
transparent nor attentive to the definition of the WFD as stated in Annex V (2.1.2),
particularly with regard to dependent ecosystems. A particular important gap is found in
ES127, where GWB status is rated as “good” even though no specific quantitative threshold
is set on the basis of “water policy” criteria.
40
kom (2015) 0120 - Ingen titel
1925138_0041.png
RBD
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
TOTAL
Good
No.
6
18
28
20
59
24
9
42
35
3
3
22
60
104
33
53
1
0
0
0
5
5
3
0
0
533
%
100,0
100,0
100,0
100,0
92,2
100,0
45,0
70,0
52,2
21,4
75,0
34,9
66,7
99,0
84,6
58,9
10,0
0,0
0,0
0,0
100,0
100,0
100,0
0,0
0,0
71,3
No.
0
0
0
0
5
0
11
18
32
3
0
41
30
1
6
37
9
4
0
4
0
0
0
0
3
204
Poor
%
0,0
0,0
0,0
0,0
7,8
0,0
55,0
30,0
47,8
21,4
0,0
65,1
33,3
1,0
15,4
41,1
90,0
100,0
0,0
100,0
0,0
0,0
0,0
0,0
100,0
27,3
No.
0
0
0
0
0
0
0
0
0
8
1
0
0
0
0
0
0
0
1
0
0
0
0
1
0
11
Unknown
%
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
57,1
25,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
100,0
0,0
0,0
0,0
0,0
100,0
0,0
1,5
Table 6.6:
Quantitative status of groundwater bodies
Source:
WISE and RBMPs; information provided by Spain.
3159 SWB are expected to achieve good or better global status by 2015, with significant
increases (>25 %) in 4 RBDs. Note that most likely a major number of these water bodies
will simply be re-classified from currently “unknown” status. Application of exemptions
according to WFD Article 4(4) affects 30% of SWB with particularly high numbers in
ES040, ES080, ES070 and ES020. Article 4(5) is applied in 8 RBDs affecting 3% of the total
number of SWB, with highest percentages in ES020 and ES030.
The forecast for status improvement in 2021 and 2027 is shown in table 6.7 to 6.13.
41
kom (2015) 0120 - Ingen titel
1925138_0042.png
Global status (ecological and chemical)
RBD
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
Total
Total
278
462
138
293
710
324
313
443
175
97
68
114
349
821
346
172
6
5
6
11
5
4
3
3
4
5150
Good or better
2009
No.
%
196
320
58
210
161
170
88
252
91
35
25
52
149
226
76
73
5
5
05
10
5
4
3
2
2
2223
70,5
69,3
42,0
71,7
22,7
52,5
28,1
56,9
52,0
36,1
36,8
45,6
42,7
27,5
22,0
42,4
83,3
100
083,3
90,9
100
100
100
66,7
50,0
43,2
Good or better
2015
No.
%
232
397
96
253
293
228
88
299
137
40
28
58
152
552
195
73
5
5
06
11
5
4
3
2
3
3165
83,5
85,9
69,6
86,3
41,3
70,4
28,1
67,5
78,3
41,2
41,2
50,9
43,6
67,2
56,4
42,4
83,3
100
100,0
100
100
100
100
66,7
75,0
61,5
Increase
2009-2015
%
12,9
16,7
27,5
14,7
18,6
17,9
0,0
10,6
26,3
5,2
4,4
5,3
0,9
39,7
34,4
0,0
0,0
0,0
016,7
9,1
0,0
0,0
0,0
0,0
25,0
18,3
Good
ecological
status 2021
No.
247
453
138
290
299
262
88
391
155
51
35
95
196
553
197
73
5
5
6
11
5
4
3
3
4
3569
%
88,8
98,1
100
99,0
42,1
80,9
28,1
88,3
88,6
52,6
51,5
83,3
56,2
67,4
56,9
42,4
83,3
100
100
100
100
100
100
100
100
69,3
Good
chemical
status 2021
No.
271
451
138
292
710
324
313
441
175
78
41
101
332
624
318
0
2
5
6
11
5
4
3
3
4
4652
%
97,5
97,6
100
99,7
100
100
100
99,5
100
80,4
60,3
88,6
95,1
76,0
91,9
0,0
33,3
100
100
100
100
100
100
100
100
90,3
Good
ecological
status 2027
No.
275
462
138
293
627
296
312
434
168
79
56
114
349
628
346
73
6
5
6
11
5
4
3
3
4
4697
%
98,9
100
100
100
88,3
91,4
99,7
98,0
96,0
81,4
82,4
100
100
76,5
100
42,4
100
100
100
100
100
100
100
100
100
91,2
Good
chemical
status 2027
No.
278
455
138
293
710
324
313
442
175
87
63
114
349
636
346
0
6
5
6
11
5
4
3
3
4
4770
%
100
98,5
100
100
100
100
100
99,8
100
89,7
92,6
100
100
77,5
100
0,0
100
100
100
100
100
100
100
100
100
92,6
Global exemptions 2009 (% of all
SWBs)
Art
Art
Art
Art
4(4)
4(5)
4(6)
4(7)
%
%
%
%
15,5
12,6
30,4
13,7
47,0
21,0
71,6
30,5
17,7
40,2
41,2
49,1
56,4
9,0
43,6
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
33,3
25,0
29,6
1,1
1,5
0,0
0,0
11,7
5,6
0,0
2,0
4,0
1,0
0,0
0,0
0,0
1,5
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
2,7
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
4,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
25,0
0,2
0,0
0,0
0,0
0,7
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
Water bodies with good status in 2009 are those where ecological status is high or good and the chemical status is good, and exemptions are not considered. Water bodies expected to achieve
good status in 2015 fall into the following categories: ecological status is high or good and the chemical status is good, exemptions are not considered; chemical status is good, and the
ecological status is moderate or below but no ecological exemptions; ecological status is high or good, and the chemical status is failing to achieve good but there are no chemical exemptions;
Table 6.7:
Surface water bodies: overview of status in 2009 and expected status in 2015, 2021 and 2027.
42
kom (2015) 0120 - Ingen titel
1925138_0043.png
and ecological status is moderate or below, and chemical status is failing to achieve good but there are no ecological nor chemical exemptions. Note: Water bodies with
unknown/unclassified/Not applicable in either ecological or chemical status are not considered
Source:
WISE and RBMPs; information provided by Spain (2014).
Ecological status
Ecological exemptions (% of all SWBs)
Good ecological
Good ecological
Good or better
Increase
Art
Art
Art
status 2021
status 2027
RBD
Total
Good or better 2009
Art 4(4)
2015
2009 -2015
4(5)
4(6)
4(7)
No.
%
No.
%
%
No.
%
No.
%
%
%
%
%
ES010
227
170
74,9
189
83,3
8,4
198
87,2
225
99,1
15,9
0,9
0,0
0,0
ES014
422
211
50,0
398
94,3
44,3
422
100,0
422
100,0
5,7
0,0
0,0
0,0
ES017
101
53
52,5
77
76,2
23,8
101
100,0
101
100,0
23,8
0,0
0,0
0,0
ES018
258
194
75,2
234
90,7
15,5
257
99,6
258
100,0
9,3
0,0
0,0
0,0
ES020
620
133
21,5
253
40,8
19,4
258
41,6
556
89,7
48,9
10,3
0,0
0,0
ES030
198
121
61,1
165
83,3
22,2
178
89,9
190
96,0
12,6
2,5
0,0
0,0
ES040
244
69
28,3
67
27,5
-0,8
67
27,5
243
99,6
72,1
0,0
0,0
0,0
ES050
325
192
59,1
200
61,5
2,5
281
86,5
316
97,2
35,7
2,8
0,0
0,0
ES060
130
71
54,6
107
82,3
27,7
120
92,3
127
97,7
15,4
2,3
2,3
0,0
ES063
67
13
19,4
29
43,3
23,9
34
50,7
54
80,6
37,3
1,5
0,0
0,0
ES064
51
18
35,3
19
37,3
2,0
24
47,1
39
76,5
39,2
0,0
0,0
0,0
ES070
84
41
48,8
44
52,4
3,6
76
90,5
84
100,0
47,6
0,0
0,0
0,0
ES080
289
123
42,6
126
43,6
1,0
165
57,1
289
100,0
56,4
0,0
0,0
0,0
ES091
705
240
34,0
551
78,2
44,1
551
78,2
626
88,8
10,6
1,4
0,0
0,0
ES100
268
67
25,0
173
64,6
39,6
173
64,6
268
100,0
35,4
0,0
0,0
0,0
ES110
158
69
43,7
69
43,7
0,0
69
43,7
69
43,7
0,0
0,0
0,0
0,0
ES120
5
5
100,0
5
100,0
0,0
5
100,0
5
100,0
0,0
0,0
0,0
0,0
ES122
5
5
100,0
5
100,0
0,0
5
100,0
5
100,0
0,0
0,0
0,0
0,0
ES123
5
0
0,0
0
0,0
0,0
0
0,0
0
0,0
0,0
0,0
0,0
0,0
ES124
6
6
100,0
6
100,0
0,0
6
100,0
6
100,0
0,0
0,0
0,0
0,0
ES125
5
5
100,0
5
100,0
0,0
5
100,0
5
100,0
0,0
0,0
0,0
0,0
ES126
4
4
100,0
4
100,0
0,0
4
100,0
4
100,0
0,0
0,0
0,0
0,0
ES127
3
3
100,0
3
100,0
0,0
3
100,0
3
100,0
0,0
0,0
0,0
0,0
ES150
2
2
100,0
2
100,0
0,0
2
100,0
2
100,0
0,0
0,0
0,0
0,0
ES160
2
2
100,0
2
100,0
0,0
2
100,0
2
100,0
0,0
0,0
0,0
0,0
4184
1822
43,5
2738
65,4
21,9
3011
72,0
3904
93,3
27,9
2,2
0,1
0,0
Total
Table 6.8:
Natural surface water bodies: ecological status in 2009 and expected status in 2015, 2021 and 2027.
Source:
WISE and RBMPs; information provided by Spain (2014).
43
kom (2015) 0120 - Ingen titel
1925138_0044.png
Chemical status
RBD
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
Total
Total
227
422
101
258
620
198
244
325
130
67
51
84
289
705
268
158
5
5
5
6
5
4
3
2
2
4184
Good or better 2009
No.
39
356
62
62
599
192
215
282
116
30
22
77
159
0
140
0
2
5
5
6
5
4
3
0
2
2378
%
17,2
84,4
61,4
24,0
96,6
97,0
88,1
86,8
89,2
44,8
43,1
91,7
55,0
0,0
52,2
0,0
40,0
100,0
100,0
100,0
100,0
100,0
100,0
0,0
100,0
56,8
Good or better 2015
No.
220
391
95
256
620
198
244
324
130
52
31
79
281
622
258
0
2
5
5
6
5
4
3
2
2
3830
%
96,9
92,7
94,1
99,2
100,0
100,0
100,0
99,7
100,0
77,6
60,8
94,0
97,2
88,2
96,3
0,0
40,0
100,0
100,0
100,0
100,0
100,0
100,0
100,0
100,0
91,5
Increase
2009 -2015
%
79,7
8,3
32,7
75,2
3,4
3,0
11,9
12,9
10,8
32,8
17,6
2,4
42,2
88,2
44,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
100,0
0,0
34,7
Good chemical
status 2021
No.
220
422
101
258
620
198
244
324
130
52
31
79
281
622
258
0
2
5
5
6
5
4
3
2
2
3869
%
96,9
100,0
100,0
100,0
100,0
100,0
100,0
99,7
100,0
77,6
60,8
94,0
97,2
88,2
96,3
0,0
40,0
100,0
100,0
100,0
100,0
100,0
100,0
100,0
100,0
92,5
Good chemical status
2027
No.
227
422
101
258
620
198
244
324
130
59
46
84
289
634
268
0
5
5
5
6
5
4
3
2
2
3936
%
100,0
100,0
100,0
100,0
100,0
100,0
100,0
99,7
100,0
88,1
90,2
100,0
100,0
89,9
100,0
0,0
100,0
100,0
100,0
100,0
100,0
100,0
100,0
100,0
100,0
94,1
Chemical exemptions (% of all SWBs)
Art 4(4)
%
3,1
7,3
5,9
0,8
0,0
0,0
0,0
0,0
0,0
10,4
29,4
6,0
2,8
1,7
3,7
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
2,5
Art 4(5)
%
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,3
0,0
0,0
0,0
0,0
0,0
0,3
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,1
Art 4(6)
%
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
Art 4(7)
%
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
Table 6.9:
Natural surface water bodies: chemical status in 2009 and expected status in 2015, 2012 and 2027
Source:
WISE and RBMPs; information provided by Spain (2015). As regards the increase of the number of Natural SWB in good chemical status by 2015, the figures of Table 6.9 might be
misleading, as they include the expected re-classification of the currently “unknown” status of water bodies (see Table 6.3).
44
kom (2015) 0120 - Ingen titel
1925138_0045.png
GW chemical status
RBD
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
Total
Total
6
18
28
20
64
24
20
60
67
14
4
63
90
105
39
90
10
4
1
4
5
5
3
1
3
748
Good or better 2009
No.
5
18
26
20
50
18
7
44
32
5
2
39
63
82
16
55
2
0
0
3
4
3
0
0
0
494
%
83,3
100,0
92,9
100,0
78,1
75,0
35,0
73,3
47,8
35,7
50,0
61,9
70,0
78,1
41,0
61,1
20,0
0,0
0,0
75,0
80,0
60,0
0,0
0,0
0,0
66,0
Good or better
2015
No.
%
5
83,3
18
100,0
27
96,4
20
100,0
48
75,0
18
75,0
7
35,0
49
81,7
46
68,7
7
50,0
2
50,0
37
58,7
63
70,0
82
78,1
18
46,2
64
71,1
2
20,0
0
0,0
01
100,0
3
75,0
4
80,0
5
100,0
0
0,0
0
0,0
0
0,0
526
70,3
Increase
2009 -2015
%
0,0
0,0
3,6
0,0
-3,1
0,0
0,0
8,3
20,9
14,3
0,0
-3,2
0,0
0,0
5,1
10,0
0,0
0,0
100,0
0,0
0,0
40,0
0,0
0,0
0,0
4,3
Good chemical
status 2021
No.
6
18
28
20
48
22
7
55
55
7
4
38
72
82
18
75
2
0
1
4
4
5
0
1
3
575
%
100,0
100,0
100,0
100,0
75,0
91,7
35,0
91,7
82,1
50,0
100,0
60,3
80,0
78,1
46,2
83,3
20,0
0,0
100,0
100,0
80,0
100,0
0,0
100,0
100,0
76,9
Good chemical
status 2027
No.
6
18
28
20
50
24
20
60
62
12
4
53
87
103
39
87
2
0
1
4
5
5
3
1
3
697
%
100,0
100,0
100,0
100,0
78,1
100,0
100,0
100,0
92,5
85,7
100,0
84,1
96,7
98,1
100,0
96,7
20,0
0,0
100,0
100,0
100,0
100,0
100,0
100,0
100,0
93,2
Table 6.10:
Groundwater bodies: chemical status in 2009 and expected status in 2015, 2012 and 2027
Source:
WISE and RBMPs; information provided by Spain (2015).
GW chemical exemptions (% of all
GWBs)
Art
Art
Art
Art
4(4)
4(5)
4(6)
4(7)
%
%
%
%
16,7
0,0
0,0
0,0
0,0
0,0
0,0
0,0
3,6
0,0
0,0
0,0
0,0
0,0
0,0
0,0
3,1
21,9
0,0
0,0
25,0
0,0
0,0
0,0
65,0
0,0
0,0
0,0
18,3
0,0
0,0
0,0
23,9
7,5
0,0
0,0
35,7
14,3
0,0
0,0
50,0
0,0
0,0
0,0
25,4
15,9
0,0
0,0
26,7
3,3
0,0
0,0
20,0
1,9
0,0
0,0
53,8
0,0
0,0
0,0
25,6
3,3
0,0
0,0
0,0
80,0
0,0
0,0
0,0
100,0
0,0
0,0
0,0
0,0
0,0
0,0
25,0
0,0
0,0
0,0
20,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
100,0
0,0
0,0
0,0
100,0
0,0
0,0
0,0
100,0
0,0
0,0
0,0
22,9
6,8
0,0
0,0
45
kom (2015) 0120 - Ingen titel
1925138_0046.png
Groundwater quantitative status
RBD
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
Total
Total
6
18
28
20
64
24
20
60
67
14
4
63
90
105
39
90
10
4
1
4
5
5
3
1
3
748
Good or better
2009
No.
%
6
100,0
18
100,0
28
100,0
20
100,0
59
92,2
24
100,0
9
45,0
42
70,0
35
52,2
3
21,4
3
75,0
22
34,9
60
66,7
104
99,0
33
84,6
53
58,9
1
10,0
0
0,0
0
0,0
0
0,0
5
100,0
5
100,0
3
100,0
0
0,0
0
0,0
533
71,3
Good or better
2015
No.
%
6
100,0
18
100,0
28
100,0
20
100,0
59
92,2
24
100,0
9
45,0
43
71,7
45
67,2
14
100,0
4
100,0
22
34,9
60
66,7
104
99,0
37
94,9
88
97,8
1
10,0
0
0,0
0
0,0
0
0,0
5
100,0
5
100,0
3
100,0
0
0,0
0
0,0
595
79,5
Increase
2009 -2015
%
0,0
0,0
0,0
0,0
0,0
0,0
0,0
1,7
14,9
78,6
25,0
0,0
0,0
0,0
10,3
38,9
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
8,3
Good quantitative
status 2021
No.
6
18
28
20
59
24
9
52
54
14
4
24
63
104
37
89
10
0
0
0
5
5
3
1
3
632
%
100,0
100,0
100,0
100,0
92,2
100,0
45,0
86,7
80,6
100,0
100,0
38,1
70,0
99,0
94,9
98,9
100,0
0,0
0,0
0,0
100,0
100,0
100,0
100,0
100,0
84,5
Good quantitative
status 2027
No.
6
18
28
20
60
24
20
60
67
14
4
63
90
105
39
90
10
0
0
0
5
5
3
1
3
735
%
100,0
100,0
100,0
100,0
93,8
100,0
100,0
100,0
100,0
100,0
100,0
100,0
100,0
100,0
100,0
100,0
100,0
0,0
0,0
0,0
100,0
100,0
100,0
100,0
100,0
98,3
Table 6.11:
Groundwater bodies: quantitative status in 2009 and expected status in 2015, 2012 and 2027
Source:
WISE and RBMPs; information provided by Spain (2014).
GW quantitative exemptions (% of all
GWBs)
Art
Art
Art
Art
4(4)
4(5)
4(6)
4(7)
%
%
%
%
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
5,0
1,6
6,3
0,0
0,0
0,0
0,0
0,0
0,0
55,0
0,0
0,0
0,0
28,3
0,0
0,0
0,0
32,8
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
65,1
0,0
0,0
0,0
33,3
0,0
0,0
0,0
1,0
0,0
0,0
0,0
5,1
0,0
0,0
0,0
2,2
0,0
0,0
0,0
90,0
0,0
0,0
0,0
0,0
100,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
100,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
100,0
0,0
0,0
0,0
100,0
0,0
0,0
0,0
18,7
1,6
0,0
0,1
46
kom (2015) 0120 - Ingen titel
1925138_0047.png
RBD
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
Total
Total
HMWB
and AWB
51
40
37
35
90
126
69
118
45
30
17
30
60
116
78
14
1
0
1
5
0
0
0
1
2
966
Ecological potential
Good or better 2009
No.
25
11
7
15
28
49
18
63
20
9
7
14
26
0
11
4
0
-
0
4
-
-
-
0
0
311
%
49,0
27,5
18,9
42,9
31,1
38,9
26,1
53,4
44,4
30,0
41,2
46,7
43,3
0,0
14,1
28,6
0,0
-
0
80,0
-
-
-
0,0
0,0
32,2
Good or better 2015
No.
43
25
19
20
40
63
21
99
30
11
11
15
26
2
24
4
0
-
1
5
-
-
-
0
1
460
%
84,3
62,5
51,4
57,1
44,4
50,0
30,4
83,9
66,7
36,7
64,7
50,0
43,3
1,7
30,8
28,6
0,0
-
100,0
100,0
-
-
-
0,0
50,0
47,6
Increase
2009 -2015
%
35,3
35,0
32,4
14,3
13,3
11,1
4,3
30,5
22,2
6,7
23,5
3,3
0,0
1,7
16,7
0,0
0,0
-
100,0
20,0
-
-
-
0,0
50,0
15,4
Good ecological
potential 2021
No.
49
31
37
33
41
84
21
110
35
17
11
19
31
2
24
4
0
-
1
5
-
-
-
1
2
558
%
96,1
77,5
100,0
94,3
45,6
66,7
30,4
93,2
77,8
56,7
64,7
63,3
51,7
1,7
30,8
28,6
0,0
-
100,0
100,0
-
-
-
100,0
100,0
57,8
Good ecological
potential 2027
No.
50
40
37
35
71
106
69
118
41
25
17
30
60
2
78
4
1
-
1
5
-
-
-
1
2
793
%
98,0
100,0
100,0
100,0
78,9
84,1
100,0
100,0
91,1
83,3
100,0
100,0
100,0
1,7
100,0
28,6
100,0
-
100,0
100,0
-
-
-
100,0
100,0
82,1
Ecological exemptions (% of all
HMWB/AWB)
Art
Art
Art
Art 4(4)
4(5)
4(6)
4(7)
%
%
%
%
13,7
2,0
0,0
0,0
37,5
0,0
0,0
0,0
48,6
0,0
0,0
0,0
42,9
0,0
0,0
5,7
34,4
21,1
0,0
0,0
34,1
10,3
0,0
0,0
69,6
0,0
0,0
0,0
16,1
0,0
0,0
0,0
24,4
8,9
8,9
0,0
46,7
0,0
0,0
0,0
35,3
0,0
0,0
0,0
50,0
0,0
0,0
0,0
56,7
0,0
0,0
0,0
0,0
0,0
0,0
0,0
69,2
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
-
-
-
-
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
-
-
-
-
-
-
-
-
-
-
-
-
100,0
0,0
0,0
0,0
50,0
0,0
50,0
0,0
34,4
3,8
0,5
0,2
Table 6.12:
Heavily modified and artificial water bodies: ecological potential in 2009 and expected ecological potential in 2015, 2012 and 2027
Source:
WISE and RBMPs; information provided by Spain (2014).
47
kom (2015) 0120 - Ingen titel
1925138_0048.png
RBD
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
Total
Total
HMWB
and AWB
51
40
37
35
90
126
69
118
45
30
17
30
60
116
78
14
1
0
1
5
0
0
0
1
2
966
Chemical status
Good or better 2009
No.
17
26
19
19
87
121
53
101
40
20
6
20
22
0
37
0
0
-
0
4
-
-
-
0
0
592
%
33,3
65,0
51,4
54,3
96,7
96,0
76,8
85,6
88,9
66,7
35,3
66,7
36,7
0,0
47,4
0,0
0,0
-
0,0
80,0
-
-
-
0,0
0,0
61,3
Good or better 2015
No.
51
29
30
33
90
126
69
117
45
26
10
22
51
2
60
0
0
-
1
5
-
-
-
0
2
769
%
100,0
72,5
81,1
94,3
100,0
100,0
100,0
99,2
100,0
86,7
58,8
73,3
85,0
1,7
76,9
0,0
0,0
-
100,0
100,0
-
-
-
0,0
100,0
79,6
Increase
2009 -2015
%
66,7
7,5
29,7
40,0
3,3
4,0
23,2
13,6
11,1
20,0
23,5
6,7
48,3
1,7
29,5
0,0
0,0
-
100,0
20,0
-
-
-
0,0
100,0
18,3
Good chemical status
2021
No.
51
29
37
34
90
126
69
117
45
26
10
22
51
2
60
0
0
-
1
5
-
-
-
1
2
778
%
100,0
72,5
100,0
97,1
100,0
100,0
100,0
99,2
100,0
86,7
58,8
73,3
85,0
1,7
76,9
0,0
0,0
-
100,0
100,0
-
-
-
100,0
100,0
80,5
Good chemical
status 2027
No.
51
33
37
35
90
126
69
118
45
28
17
30
60
2
78
0
1
-
1
5
-
-
-
1
2
829
%
100,0
82,5
100,0
100,0
100,0
100,0
100,0
100,0
100,0
93,3
100,0
100,0
100,0
1,7
100,0
0,0
100,0
-
100,0
100,0
-
-
-
100,0
100,0
85,8
Source:
WISE and RBMPs; information provided by Spain (2014).
Table 6.13:
Heavily modified and artificial water bodies: chemical status in 2009 and expected status in 2015, 2012 and 2027.
Chemical exemptions (% of all
HMWB/AWB)
Art
Art
Art
Art
4(4)
4(5)
4(6)
4(7)
%
%
%
%
0,0
0,0
0,0
0,0
10,0
17,5
0,0
0,0
18,9
0,0
0,0
0,0
5,7
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,8
0,0
0,0
0,0
0,0
0,0
0,0
0,0
6,7
0,0
0,0
0,0
41,2
0,0
0,0
0,0
26,7
0,0
0,0
0,0
15,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
23,1
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
-
-
-
-
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
-
-
-
-
-
-
-
-
-
-
-
-
100,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
6,1
0,7
0,0
0,0
48
kom (2015) 0120 - Ingen titel
1925138_0049.png
Figure 6.1:
Map of ecological status of natural surface water bodies 2009
Figure 6.2:
Map of ecological status of natural surface water bodies 2015
Good or better
Less than Good or Unknown
River Basin Districts
Countries outside EU
Source:
WISE, RBMPs, Eurostat (country borders); information provided by Spain.
49
kom (2015) 0120 - Ingen titel
1925138_0050.png
Figure 6.3:
Map of ecological potential of artificial and heavily modified water bodies 2009
Figure 6.4:
Map of ecological potential of artificial and heavily modified water bodies 2015
Good or better
Less than Good or Unknown
River Basin Districts
Countries outside EU
Source:
WISE, RBMPs, Eurostat (country borders); information provided by Spain.
50
kom (2015) 0120 - Ingen titel
1925138_0051.png
Figure 6.5:
Map of chemical status of natural surface water bodies 2009
Figure 6.6:
Map of chemical status of natural surface water bodies 2015
Good
Failing to achieve good or Unknown
River Basin Districts
Countries outside EU
Source:
WISE, RBMPs, Eurostat (country borders); information provided by Spain.
51
kom (2015) 0120 - Ingen titel
1925138_0052.png
Figure 6.7:
Map of chemical status of artificial and heavily modified water bodies 2009
Figure 6.8:
Map of chemical status of artificial and heavily modified water bodies 2015
Good
Failing to achieve good or Unknown
River Basin Districts
Countries outside EU
Source:
WISE, RBMPs, Eurostat (country borders); information provided by Spain.
52
kom (2015) 0120 - Ingen titel
1925138_0053.png
Figure 6.9:
Map of chemical status of groundwater bodies 2009
Figure 6.10:
Map of chemical status of groundwater bodies 2015
Good
Less than Good or Unknown
River Basin Districts
Countries outside EU
Source:
WISE, RBMPs, Eurostat (country borders); information provided by Spain.
53
kom (2015) 0120 - Ingen titel
1925138_0054.png
Figure 6.11:
Map of quantitative status of groundwater bodies 2009
Figure 6.12:
Map of quantitative status of groundwater bodies 2015
Good
Less than Good or Unknown
River Basin Districts
Countries outside EU
Source:
WISE, RBMPs, Eurostat (country borders); information provided by Spain.
54
kom (2015) 0120 - Ingen titel
1925138_0055.png
ASSESSMENT OF ECOLOGICAL STATUS OF SURFACE WATERS
The IPH (5.1.2) establishes a common baseline for the status assessment which has been
implemented, in general, in all RBDs
23
. The assessment framework for ecological status is
however incomplete as the IPH does not include boundary values for all quality elements,
water categories and types. Moreover, the way the boundaries are set is not binding for
RBDs. The IPH states that the boundaries included have to be used “in general” and RBDs
can depart from them if justified in the RBMP. In addition, the IPH exempt the application of
the boundaries for biological quality elements in case of prolonged drought, which is not in
line with the WFD and ignores the mechanisms that the WFD includes to handle such
exceptional meteorological situations (Article 4(6)). Finally, the values can be different
depending on the sampling protocol. All these flexibilities built in the IPH lead to lack of
transparency and clarity on what is actually the assessment framework applied by each
RBD
24
.
In principle the normative part of the RBMPs include the boundaries for good status for the
types in each RBD. In some cases the use of the boundaries are qualified in a way that is not
in line with WFD, such as in ES070 (Article 20.2: "the reference conditions will not be
considered in the assessment of good status if failure is due only to natural conditions"; one-
out all-out is not applied to the IPS diatom index). In ES030 Tajo and ES040 Guadiana some
boundaries in the normative part of the RBMP have been significantly changed to less
protective values than the IPH values (e.g. for types 5 and 8). On the other hand ES091 Ebro
and ES070 Segura use stricter values for some types (e.g. type 12) than ES080 Jucar and
ES030 Tajo. The good-moderate boundary values for ES100 are also different for the same
types.
It has not been possible to find a coherent justification for such discrepancies. The values
used should have reflected the legally binding boundaries of the 2008 Commission Decision
on Intercalibration
25
. The translation of the intercalibration results into the Spanish
classification scheme is unclear. The purpose of the typology is to group water bodies with
the same abiotic characteristics and therefore sharing reference conditions and boundaries.
The discrepancies appear to indicate that either typology is not adequate for the purpose (it
should be tested against biological data to ensure consistency) or the boundaries used by the
RBDs are not consistent. The reference conditions seem to vary as well between RBDs for
the same types.
In general, all RBMPs include (standardised) general statements on the legal and theoretical
framework for the classification of ecological status; but not necessarily information on the
practical steps undertaken (e.g. the non-consideration of certain BQEs, like fish) or detailed
information on classification per water body.
23
As indicated earlier for other aspects of implementation, it is not clear to what extent the intra-community
RBDs have used the IPH.
24
The Spanish authorities informed that work is on-going on a draft Royal Decree to consolidate the framework
for the assessment of status.
25
In the meantime additional results of the intercalibration process became available and the Commission
Decision 2008/915/EC has been replaced by a new Decision 2013/480/EU, to be considered for the 2015 update
of the RBMPs.
55
kom (2015) 0120 - Ingen titel
1925138_0056.png
In general, the one-out-all-out principle has been correctly applied. However, in ES123,
ES125 and ES127, physico-chemical indicators (for Phosphates and/or Nitrates) are rated as
moderate or bad for some CWBs but, in spite of this fact, ecological status is classified as
"good”.
Assessment methods
The IPH (5.1.2 and Annex III) shows that there are some important gaps in the classification
system:
For RW there is no classification system for macrophytes (QE1-2-3) and fish (QE1-
4); phytoplankton (QE1-1) has been considered as not relevant for Spanish river
types, although the technical justification provided has not been considered sufficient
to discard this quality element from all Spanish rivers
26
;
-
For LW only phytoplankton (QE1-1) is developed for reservoirs; fish (QE1-4) has
been considered as not relevant for Spanish lakes, although the technical justification
provided has not been considered sufficient to discard this quality element
23
.
-
For TW only benthic fauna is developed (QE1-3, M-AMBI) and phytoplankton (QE1-
1) is partly developed (chlorophyll a);
-
For CW the system is fully developed.
Of the above-mentioned, it is particularly worrying that QE1-4 (fish) has not been developed,
as this BQE is particularly relevant for assessing many of the pressures, in particular water
abstraction, hydrological alteration, morphological changes and pollution.
-
26
Discussed at the ECOSTAT Working Group in 2014.
56
kom (2015) 0120 - Ingen titel
1925138_0057.png
Rivers
Benthic invertebrates
Hydromorphological
Physico-Chemical
Lakes
Benthic invertebrates
Hydromorphological
Physico-Chemical
Transitional
Benthic invertebrates
Hydromorphological
Physico-Chemical
Coastal
Benthic invertebrates
Hydromorphological
-
-
Physico-Chemical
-
-
Phytoplankton
Phytoplankton
Phytoplankton
Phytoplankton
Phytobenthos
Phytobenthos
Macrophytes
Macrophytes
Angiosperms
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Angiosperms
-
-
Macroalgae
Macroalgae
Fish
Fish
Fish
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Table 7.1.1
Availability of biological assessment methods as reflected in the RBMPs. Notes: based on the information presented in the RBMPs and reported in WISE. Green means
that a method is available but it does not necessarily mean that it is WFD compliant. If a method is presented but not used the cell is marked in yellow. Spain provided in 2014 updated
information showing the progress in the development of some of the methods but it is not reflected here.
Assessment methods developed
Assessment methods partially developed or under development
Assessment methods not developed for BQEs, no information provided on the assessment methods, unclear or inconsistent information provided
-
Water category not relevant
Source:
RBMPs and WISE.
kom (2015) 0120 - Ingen titel
1925138_0058.png
There is no homogeneous methodology for grouping of water bodies and the extrapolation of
status for non-monitored water bodies. It is not clear how this is done.
The assessment methodology for supporting physico-chemical quality elements has been
developed by the IPH Chapter 5.1.2, but still requires further work for being type-specific
(including standards for reservoirs, such as on phosphorous) and consistent with the
biological boundaries.
The following BQEs have been considered sensitive to the indicated impacts in the RBMPs:
RW
1-1 (ES014, ES017, ES018,
ES020, ES030, ES040, ES050,
ES060, ES070, ES080, ES100)
1-2 (ES014, ES017, ES030,
ES040, ES050, ES060, ES070,
ES080, ES091, ES100)
1-3 (ES014, ES017, ES030,
ES040, ES050, ES060, ES070,
ES080, ES091, ES100)
1-4 (ES014, ES017, ES020,
ES040, ES060, ES070, ES080,
ES100)
1-5 (ES014)
1-1 (ES014, ES017, ES030,
ES040, ES050, ES060, ES070,
ES100)
1-2 (ES014, ES017, ES030,
ES040, ES050, ES060, ES070,
ES080, ES091, ES100)
1-3 (ES014, ES017, ES018,
ES030, ES040, ES050, ES060,
ES070, ES080, ES091, ES100)
1-4 (ES014, ES017, ES040,
ES060, ES070, ES080, ES100)
1-5 (ES014, ES018)
1-1 (ES014, ES017, ES030,
ES050, ES060, ES070)
1-2 (ES014, ES017, ES020,
ES030, ES050, ES060, ES070,
ES091, ES100)
1-3 (ES014, ES017, ES018,
ES020, ES030, ES050, ES060,
ES070, ES080, ES091, ES100)
1-4 (ES014, ES017, ES020,
ES060, ES070, ES080, ES100)
1-5 (ES014, ES017)
1-1 (ES070)
1-2 (ES070)
1-3 (ES070)
1-4 (ES070)
1-2 (ES080)
1-3 (ES014, ES080)
1-4 (ES080)
1-5 (ES014)
1-1 (ES060)
1-2 (ES060, ES070)
1-3 (ES060, ES070)
1-4 (ES060)
1-1 (ES080)
1-3 (ES080)
LW
1-1 (ES017, ES030,
ES060, ES070,
ES080)
1-2 (ES070)
1-3 (ES060)
1-4 (ES017)
1-5 (ES100)
TW
1-1 (ES014, ES060,
ES063, ES064,
ES070)
1-2 (ES014)
1-3 (ES060, ES064,
ES070)
1-4 (ES014)
1-5 (ES100)
CW
1-1 (ES014, ES017,
ES060, ES070,
ES100)
1-2 (ES014, ES017,
ES070)
1-3 (ES017, ES060,
ES070)
Nutrient
enrichment
1-1 (ES018, ES030,
ES070)
1-2 (ES070)
Organic
enrichment
1-1 (ES014, ES018,
ES063, ES064,
ES070)
1-2 (ES014, ES018)
1-3 (ES018, ES064,
ES070)
1-4 (ES014, ES018)
1-1 (ES014, ES017,
ES018, ES070,
ES100)
1-2 (ES014, ES017,
ES018, ES070)
1-3 (ES017, ES018,
ES070)
1-1 (ES070)
1-2 (ES070)
Contamination by
priority substances
1-1 (ES014, ES017,
ES018, ES064,
ES070)
1-2 (ES014, ES017,
ES018)
1-3 (ES017, ES018,
ES064, ES070)
1-4 (ES014, ES017,
ES018)
1-1 (ES014, ES017)
1-2 (ES014, ES017)
1-3 (ES017)
1-4 (ES014, ES017)
1-1 (ES014, ES064,
ES070)
1-2 (ES014, ES070)
1-3 (ES064, ES070)
1-3 (ES080)
Contaminated
sediments
1-1 (ES014, ES070)
1-2 (ES014, ES070)
1-3 (ES070)
Acidification
1-2 (ES070)
1-3 (ES070)
Saline intrusion
Elevated
temperatures
1-2 (ES070)
1-3 (ES070)
1-1 (ES080)
58
kom (2015) 0120 - Ingen titel
1925138_0059.png
Altered habitats
27
Other impacts
Table 7.1.2:
Summary of the BQEs used in operational monitoring in relation to the significant pressures and
main impacts on water bodies in RBDs. Information provided by Spain (2014).
RW
1-4 (ES080)
1-1 (ES014, ES017, ES030,
ES040, ES050, ES060, ES070,
ES080)
1-2 (ES014, ES017, ES020,
ES030, ES040, ES050, ES060,
ES070, ES080, ES100)
1-3 (ES014, ES017, ES018,
ES020, ES030, ES040, ES050,
ES060, ES070, ES080, ES100)
1-4 (ES014, ES017, ES020,
ES040, ES060, ES070, ES080,
ES100)
1-5 (ES014, ES017, ES070,
ES080)
1-1 (ES030, ES050, ES060,
ES070)
1-2 (ES014, ES030, ES040,
ES050, ES060, ES070, ES080,
ES091, ES100)
1-3 (ES014, ES017, ES018,
ES030, ES040, ES050, ES060,
ES070, ES080, ES091, ES100)
1-4 (ES014, ES060, ES070,
ES080, ES100)
1-5 (ES014, ES017, ES070)
LW
1-1 (ES018, ES020,
ES040, ES060,
ES070, ES080)
1-2 (ES020, ES070)
1-3 (ES020, ES040,
ES060)
1-4 (ES018, ES020,
ES040)
1-5 (ES100)
TW
1-1 (ES014, ES017,
ES040)
1-2 (ES014, ES017,
ES040)
1-3 (ES017, ES040)
1-4 (ES014, ES017,
ES040)
1-5 (ES100)
CW
1-1 (ES014, ES070,
ES100)
1-2 (ES014, ES070)
1-3 (ES070)
1-1 (ES018, ES030,
ES060, ES070)
1-2 (ES070)
1-3 (ES060)
1-1 (ES050)
1-3 (ES050)
1-1 (ES070, ES100)
1-2 (ES070)
1-3 (ES070)
The linkages established comparing the different RBMPs are varied. It appears that there is
no common understanding on how the different quality elements respond to impacts.
Results
The results show the following distribution of status (see Table 6.8): 1817 natural SWB
(43%) are considered in good or better status in 2009; with better than average results in
some RBDs (ES010, ES014, ES017, ES018, ES050 and ES060) and even better results in a
couple of RBDs (75%: ES010 y ES018). Low percentages of SWB in good or better status
(≤25%) are found in ES063, ES020 and ES100.
In general, there is a lack of information about the uncertainties in classification (in particular
in the RBMPs, where no RBD raises uncertainty issues) and disparity regarding the
confidence on the classification results (reported under WISE). One RBD (ES040) reports
100% classifications as high confidence, despite the fact that its RBMP mentions how lack of
data on a specific QE or lack of data on all QE in a specific water body have been handled,
e.g. referring to an expert judgment meeting in May 2009, assessing available data,
developing trend analyses and thus proposing a classification. ES020 distributes confidence
50:50 between high and low, without providing further information on uncertainties. ES018
classifies almost all water bodies with medium confidence. Other RBDs do not provide any
information on confidence.
27
Note in some RBMPs (e.g. ES014, ES017, ES020, ES050, ES060) the “altered habitats” impacts are related to
pollution pressures and not to pressures from “hydromorphological alterations” as originally intended.
59
kom (2015) 0120 - Ingen titel
Though official co-ordination mechanisms are in place and technical co-operation is taking
place (explicitly described in the RBMP ES040, and implicitly for ES010, ES020, and
ES030), transboundary co-ordination can be improved for classification of status, e.g. the
Bidasoa river estuary shared between Spain and France reflects how neighbouring water
bodies (e.g. ES111T012010 and French Estuarie Bidasoa) are classified with different results
(in Spanish plan it fails due to biological status and in French plan due to chemical), leading
to different measures.
DESIGNATION OF HMWB AND SETTING OF GOOD ECOLOGICAL POTENTIAL
(GEP)
Designation of HMWB
Designation of heavily modified water bodies (HMWB) has generally followed a complete
three stepwise approach as established in the national regulation (IPH), based on CIS
Guidance Document nº 4. However, some exceptions and gaps should be noted:
-
One RBMP (ES110) only provides brief overview information on the results of the
final designation, without adding any complementary information on the
methodology, and the stepwise assessment.
In one RBMP (ES014), HMWBs have been established after verification of the
preliminary identification (step 2 of 3), and step 3 is still missing. In fact, the RBMP
states that "the final designation will be completed when the programme of measures
is fully developed".
In Canarian RBMPs (ES120 and ES124), major ports are designated HMWBs without
clearly covering steps 2 and 3, assuming that conditions (a) and (b) of article 4.3 of
the WFD are fulfilled without justification.
In most RBMPs, criteria (or thresholds) for defining significant adverse effects on the
use are not clearly stated (though adverse effects are listed; ES080 recognises in one
case lack of data to support this test) and expert judgment has been extensively used.
ES091 does not provide the results of the assessment of significant adverse effects for
transitional water bodies.
-
-
-
Similarly, the identification of “better environmental options” and analysis criteria for
this step are not always clear, may be absent (e.g. ES100, ES110), or too generic and
poorly developed (most of the RBMPs include only a few lines of generic statements).
ES124 includes two candidate HMWBs in water bodies where port infrastructures are
planned. This approach circumvents de facto the obligations of Articles 4(1) and 4(7).
Finally, ES123 includes one so-called “preliminarly designated” HMWB namely the Port of
Arrecife without specifying the following steps to take.
-
Methodology for Good Ecological Potential (GEP)
In most RBMPs, good ecological potential (GEP) has been defined following a general
methodology established at national level in the IPH which, in turn, follows the reference-
60
kom (2015) 0120 - Ingen titel
based approach suggested by the Common Implementation Strategy Guidance document
number 4. The IPH sets some quality elements, indicators and thresholds for two types of
HMWBs:
Reservoirs: phytoplankton boundaries are given (biomass and composition) for
different types of monomictic reservoirs
-
Coastal and transitional water bodies affected by ports: boundary values are given for
some types of water bodies for phytoplankton (biomass only), pollution by nutrients
and organic matter (same values for all types), turbidity, dissolved oxygen and total
hydrocarbons.
The indicators chosen are more linked to water quality than sensitive to the physical
modification of the water bodies. Therefore, it is unclear how this scheme can be used to set
objectives and drive improvements to ecological condition in HMWBs beyond water quality
considerations. From the available information it is not possible to understand the setting of
reference values nor to assess how mitigation measures to achieve GEP have been
considered.
-
Some RBMPs establish additional boundaries for HMWBs. For example ES070 includes
boundary values for biological quality elements in channelled rivers (although without
differentiating typologies). ES080 establishes different values for diatoms IPS index in
heavily modified rivers. The rationale of this is again questionable as the IPS index is mainly
responding to water quality alterations, and not to physical modification.
More work has apparently been developed for reservoirs that for other categories of HMWBs.
In conclusion, a full methodology is still missing.
61
kom (2015) 0120 - Ingen titel
1925138_0062.png
Results HMWB and AWB
Canaries (ES)
ES123
FRG
ES125
ES124
Bay of Biscay
ES122
ES126 ES120
ES127
0 90 km
ES014
Atlantic
Ocean
ES018
ES017
ES010
ES020
ES091
ES100
ES030
ES040
ES064
ES
ES080
ES110
ES050
ES060
ES150
ES070
Mediterranean Sea
ES063
0
100
200
km
ES160
Figure 8.1:
Map of percentage Heavily Modified and Artificial water bodies by River Basin District
0–5%
5 – 20 %
20 – 40 %
40 – 60%
60 – 100 %
No data reported
River Basin Districts
Countries outside EU
Source:
WISE, Eurostat (country borders).
The overall number of HMWBs is 908. The total number of river HMWBs is 737, 17% of all
RWBs (though still significantly below the overall number of large dams in Spain); and the
overall number of artificial water bodies (AWBs) is 58 (1% of total SWB). HMWB are
relatively important in TW (33%), and several RBDs classify all their TWB as HMWB.
AWB refer mainly to the LW category, considering e.g. small reservoirs or ponds that are not
connected to rivers.
62
kom (2015) 0120 - Ingen titel
1925138_0063.png
Water category
RBD
No
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
HMWB
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
Total
ES010
ES014
ES017
ES018
ES020
ES030
ES040
AWB
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
49
33
23
27
80
116
54
102
31
14
8
21
43
63
69
3
-
-
-
-
-
-
-
-
1
737
0
0
0
0
8
1
0
0
1
0
1
0
4
2
0
0
Rivers
% of
category
18,1
8,0
21,1
10,8
11,5
37,7
21,7
26,0
23,3
21,5
16,7
23,3
14,1
9,0
26,4
3,2
-
-
-
-
-
-
-
-
100,0
16,8
0,0
0,0
0,0
0,0
1,1
0,3
0,0
0,0
0,8
0,0
2,1
0,0
1,3
0,3
0,0
0,0
No
0
-
8
0
2
0
1
1
0
0
0
2
3
43
1
-
-
-
-
-
-
-
-
-
-
61
2
-
2
2
0
9
13
2
1
2
0
3
0
5
0
-
Lakes
% of
category
0,0
-
72,7
0,0
14,3
0,0
1,7
2,9
0,0
0,0
0,0
33,3
15,8
39,1
3,7
-
-
-
-
-
-
-
-
-
-
18,5
66,7
-
18,2
28,6
0,0
56,3
22,4
5,7
12,5
20,0
0,0
50,0
0,0
4,5
0,0
-
Transitional
water
% of
No
category
0
0,0
0
4
5
-
-
1
13
4
10
6
1
4
3
3
6
-
-
-
-
-
-
-
-
-
60
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0,0
28,6
23,8
-
-
25,0
100,0
57,1
100,0
54,5
100,0
100,0
37,5
12,0
16,7
-
-
-
-
-
-
-
-
-
33,3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Coastal water
No
0
7
0
1
-
-
0
0
8
4
2
3
6
0
5
5
1
0
1
5
0
0
0
1
1
50
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
% of
category
0,0
24,1
0,0
6,7
-
-
0,0
0,0
29,6
33,3
50,0
17,6
27,3
0,0
15,2
11,9
16,7
0,0
16,7
45,5
0,0
0,0
0,0
33,3
33,3
19,2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
All water bodies
No
49
40
35
33
82
116
56
116
43
28
16
27
56
109
78
14
1
0
1
5
0
0
0
1
2
908
2
0
2
2
8
10
13
2
2
2
1
3
4
7
0
0
%
17,6
8,7
25,4
11,3
11,5
35,8
17,9
26,2
24,6
28,9
23,5
23,7
16,0
13,3
22,5
8,1
16,7
0,0
16,7
45,5
0,0
0,0
0,0
33,3
50,0
17,6
0,7
0,0
1,4
0,7
1,1
3,1
4,2
0,5
1,1
2,1
1,5
2,6
1,1
0,9
0,0
0,0
63
kom (2015) 0120 - Ingen titel
1925138_0064.png
Water category
RBD
No
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
Total
-
-
-
-
-
-
-
-
0
17
Rivers
% of
category
-
-
-
-
-
-
-
-
0,0
0,4
No
-
-
-
-
-
-
-
-
-
41
Lakes
% of
category
-
-
-
-
-
-
-
-
-
12,5
Transitional
water
% of
No
category
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Coastal water
No
-
-
-
-
-
-
-
-
-
-
% of
category
-
-
-
-
-
-
-
-
-
-
All water bodies
No
0
0
0
0
0
0
0
0
0
58
%
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
1,1
Table 8.1.1:
Number and percentage of HMWBs and AWBs
Source:
WISE; information provided by Spain.
64
kom (2015) 0120 - Ingen titel
ASSESSMENT OF CHEMICAL STATUS OF SURFACE WATER
Chemical status (Tables 6.3 and 6.9; Figures 6.5 and 6.7) is good in the majority of SWB for
most Spanish RBDs. Some RBDs report large numbers of SWBs in “unknown” status, which
are significant (>100 water bodies) for ES010, ES018, ES080, ES091, ES100 and ES110; and
the proportions are also high (>30 %) for ES063 and ES150. According to additional
information provided by Spain (2014), in ES010 and ES018 water bodies which were
identified as not subject to direct discharges from priority substances were not monitored and
were classified as “unknown” instead of “good”. This seems to ignore important potential
sources of pollution such as atmospheric deposition or urban waste water discharges. It is
recognised that in ES060, ES080, ES100 and ES110 the monitoring network might be
insufficient. No explanation has been provided for ES091, which alone sums almost 40% of
all SWBs with “unknown” chemical status, including rivers, and all transitional and coastal
water bodies. At least for these RBDs, the assessment is incomplete, which has a direct
impact on the subsequent planning steps, and is not developed according to the requirements
of the WFD that requests a fully compliant monitoring and classification system in place by
2006. ES120 does not provide a classification of chemical status.
Methodology
The methodology for chemical assessment is reflected in the transposition of the EQS
Directive (Royal Decree 60/2011), as well as in the RPH (Annex IV) and IPH (Chapter
5.1.2.2). Nonetheless, some RBMPs do not detail the methodology for the establishment of
the set values (e.g. ES124).
Substances causing exceedances
The substances most commonly causing exceedance of environmental quality standards are
heavy metals, present mainly in ES014 (in this RBD industrial pollutants are also relevant),
ES017, ES020, ES064 and ES100, where mining and industrial activities are quite prevalent.
Pesticides cause exceedances mainly in ES050, ES080 and ES100, which are characterised
by intensive agriculture and industry. Pesticides, as substances causing exceedances have not
been reported significantly for other basins with intensive agriculture (e.g. ES040, ES060,
ES063 and ES064). Table 9.2.1 includes a list of pollutants causing exceedance in the RBDs.
Lead and mercury are the substances found in the largest number of WBs (47 and 49
respectively), followed by nickel and various pesticides.
65
kom (2015) 0120 - Ingen titel
1925138_0066.png
Exceedances per RBD
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
1
1. Heavy metals - aggregated
1.1 Cadmium
1.2 Lead
1.3 Mercury
1.4 Nickel
2 Pesticides – aggregated
2.1 Alachlor
2.2. Atrazina
2.3 Chlorpyriphos
2.4 Chlorvenfinphos
2.5 Diuron
2.6 Endosulfan
2.7 Isoproturon
2.8 Hexachlorocyclohexane
2.9 Pentachlorobenzene
2.10 Simazine
3 Industrial Pollutants - aggregated
3.1 Anthracene
3.7 Dichloromethane
3.10 Nonylphenol
3.11 Octylphenol
3.12. Tetracloroetileno
3.14. Triclorometano
4 Other pollutants - aggregated
4.1 Aldrin
4.6 para-para-DDT
4.7 Fluoranthene
4.8. Hexaclorobenzeno
2
2
2
24
10
4
1
1
1
1
1
1
2
2
1
1
3
1
2
1
2
1
5
1
1
1
2
1
14
3
1
3
5
5
3
3
1
1
1
3
19
3
1
1
3
2
1
1
18
14
2
4
4
3
1
5
2
4
2
2
1
4
2
4
1
1
1
12
4
4
2
2
18
4
4
2
1
2
2
2
4
2
13
2
4
2
2
2
2
1
37
6
2
4
1
2
6
1
1
1
1
1
2
2
66
Sum
27
31
47
49
42
5
3
1
27
3
16
10
1
29
2
4
7
1
2
40
12
2
3
14
1
4
2
2
Substance causing exceedance
kom (2015) 0120 - Ingen titel
1925138_0067.png
Exceedances per RBD
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
1
4.12 Benzo(a)pyrene
4.13 Benzo(b)fluoranthene
4.14 Benzo(k)fluoranthene
4.15 Benzo(g,h,i)perylene
4.16 Indeno(1,2,3-cd)pyrene
Totals
3
5
5
7
11
7
74
20
8
25
16
2
25
2
10
47
21
29
1
22
104
0
0
0
0
0
0
0
0
1
1
Table 9.2.1:
Substances responsible for exceedances
Source:
Information provided by Spain (2014)
67
Sum
3
6
6
7
8
417
Substance causing exceedance
kom (2015) 0120 - Ingen titel
1925138_0068.png
Although data have been extracted from WISE, it is difficult to track substances in the
reported information, and this is particularly true for the RBMPs, where lists of legislative
thresholds are provided but little or no information on the pollutants present in the RBD, or
those causing poor chemical status (e.g. ES018).
In general there are large differences in the number of exceedances in different RBDs that
appear related to different intensities of monitoring rather than reflecting differences in the
occurrence of substances.
Mixing zones
Only in ES100 mixing zones are used. This RBMP states that mixing zones have been
considered for rivers and coastal waters. In coastal waters the zones have a radius of 50
metres around the outflow of the submarine emissary. In rivers the mixing zones comprise a
stretch of river from the wastewater discharge point to 50 metres downstream.
ASSESSMENT OF GROUNDWATER STATUS
Approximately 57% of the 748 Spanish GWBs are in good status, and the rest in poor or
unknown status (11 for quantitative status, according to Table 6.6; and 8 for chemical status,
according to table 6.5).
Status
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
Total
Poor chemical
status
1
0
2
0
14
6
13
16
35
7
2
24
27
23
23
35
8
4
0
1
0
2
0
0
3
246
Poor quantitative
status
0
0
0
0
5
0
11
18
32
3
0
41
30
1
6
37
9
4
0
4
0
0
0
0
3
204
Good status
5
18
26
20
48
18
5
33
27
5
2
16
50
82
14
47
0
0
0
0
4
3
0
0
0
423
Total
6
18
28
20
64
24
20
60
67
14
4
63
90
105
39
90
10
4
1
4
5
5
3
1
3
748
68
kom (2015) 0120 - Ingen titel
1925138_0069.png
Table 10.1:
Number of groundwater bodies and their status
Source:
WISE and RBMPs; information provided by Spain (2014).
Quantitative status
The quantitative status of GWBs has been defined for all except 11 GWBs in Spain, and
“unknown” status has only been assigned to GWBs in ES063, ES064, ES123 and ES150. In
particular in ES063 and ES064 (57 and 25% unknown respectively), the current assessment is
incomplete, and hampers the further planning process. This is particularly worrisome bearing
in mind the high intensity of water use in both RBDs.
The majority of GWBs are reported to be in good status in 2009 (533 GWBs, corresponding
to 71%) (Tables 6.6 and 6.11). Several RBDs in Northern Spain have reported all GWBs to
be in good quantitative status. In terms of absolute numbers, ES060, ES080 and ES110 have
reported the largest numbers of GWBs in poor status; and additionally ES040, ES120, ES124
and ES160 show high percentages (>50%). Severe data gaps are reported for ES120 and
ES124.
Chemical status
Almost all GWB have been classified and only 8 GWBs remain “unknown” chemical status.
Only two RBDs have all their GWB in good chemical status (ES014, ES018), but overall
poor status is present in a large number of GWBs, with some RBDs showing significant
percentages of water bodies in poor chemical status (>50%). The RBDs with the largest
number (> 20) of GWB in poor status are ES060, ES070, ES080, ES091, ES100, and ES110,
thus covering the whole Mediterranean area.
Protected Areas
Regarding the status of Protected Areas (PAs), information has mainly been provided for
Drinking Water Protected Areas (DWPAs). The status of the vast majority of these PAs is
unknown, with no classification provided for any PA in most of the RBMPs, including some
of the RBDs where DWPAs are particularly relevant in number. Only a few RBDs provide a
more detailed analysis including data on DWPAs in good status or failing to achieve good
status.
There are striking differences in total number of DWPAs across the different RBDs.
RBD
ES010
ES014
ES017
ES018
ES020
ES030
ES040
Good
0
0
12
20
2508
0
99
Failing to achieve
good
0
0
0
0
794
0
27
Unknown
531
1954
14
0
0
141
268
69
kom (2015) 0120 - Ingen titel
1925138_0070.png
RBD
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
Total
Good
0
0
0
0
91
1961
0
0
26
0
0
0
0
0
0
0
0
4717
Failing to achieve
good
0
0
0
0
12
0
0
0
54
0
0
0
0
0
3
0
0
890
Unknown
809
714
78
28
0
0
99
1108
0
0
0
0
0
5
0
0
20
5769
Table 10.3.1:
Status of groundwater Drinking Water Protected Areas
Source: information provided by Spain (2014). No data available for ES124.
Beyond drinking water aspects, Protected Areas have only been listed for the RBDs and
represented with a map in the RBMP. It is unclear if Protected Areas have been considered
further in the rest of the planning steps of the RBMP.
70
kom (2015) 0120 - Ingen titel
OBJECTIVES AND EXEMPTIONS
Introduction
Spain has set an objective to achieve good or better status by 2015 in 3159 surface water
bodies (61%), with a 18% increase compared with the 2009 figures (Table 6.7).
Relatively more ambitious RBDs are ES017 and ES060 that plan to increase the number of
SWBs in good status in 2015 by more than 25%. The high increase figures for ES091 (+39%)
and ES100 (+34%) are most likely influenced by the high number of water bodies in
unknown status in 2009.
According to the reported data, the least ambitious RBD in terms of the number of SWBs in
good or better status in 2015 are ES040 (28%), and in relative terms (comparing the increase)
ES040 (with 0 % increase for 2015 and 2021) and ES110, followed closely by ES060,
ES063, ES064 and ES080. This relatively small improvement is a matter of concern, in
particular bearing in mind the significant financial resources planned to be invested during
the first planning cycle; reflecting apparently a low cost-effectiveness.
As regards natural SWBs (Table 6.2 and 6.8), good or better ecological status will achieved
in 2015 in 2733 water bodies. There is a statistically forecasted 21% increase, influenced by
the high number of water bodies which status category was “unknown” in 2009. Particular
concern can be raised in ES040, where the number of SWBs in good or better ecological
status decreases between 2009 and 2015 by 2 water bodies, and large improvements are
forecasted for 2027 only (increase from 67 to 243 SWBs). There is no clear justification for
this sharp increase expected in the last WFD planning cycle.
As regards natural SWBs (Tables 6.3 and 6.9), good or better chemical status is expected to
be achieved in 2015 in 3830 water bodies. Largely due to high percentages of SWB in
unknown chemical status in 2009, an increase of +34% of SWB in good chemical status is
reported for 2015. If the effect of “unknowns” is discounted, the real improvement expected
is of around 3-4%.
Regarding HMWB and AWB, the number of water bodies in good ecological potential (Table
6.12) is expected to increase from 2009 by 15% to 47% (459 water bodies). Some RBDs are
foreseeing significant improvements (ES010, ES014, ES017, and ES050). In contrast, the
objectives established by ES091 do not seem to address adequately the WFD requirements, as
only achieving GEP in 1.7% of its 116 HMWB/AWB by 2027. This probably reflects the
lack of assessment of potential for most of HMWB/AWB in the first RBMP. Other RBDs
with low proportion GEP values (<50%) by 2015 are ES040, ES080, ES100 and ES110). It
should also be noticed that in some RBDs (ES040 and ES080) only marginal improvements
are forecasted for the 2021 deadline, and the significant improvements are only expected
within the 2027 deadline, which may prove difficult to achieve.
Regarding GWB, good quantitative status (Tables 6.6 and 6.11) is expected to increase by
8% to reach 80% by 2015 (595 GWBs). Most RBDs do not increase the number of GWBs in
good quantitative status at all between 2009 and 2015, including those RBDs with a large
proportion in poor status (ES040, ES070, and ES080). It should also be noticed that in these
RBDs with overexploited GWBs only marginal improvements are forecasted for the 2021
71
kom (2015) 0120 - Ingen titel
deadline, and the significant improvements are only expected within the 2027 deadline,
which again may prove very difficult to achieve.
Regarding GWBs, chemical status (Tables 6.5 and 6.10) is expected to increase by 4% to
reach 70% by 2015 (525 GWBs). The data varies across the RBDs: some do not increase the
number of GWBs in good chemical status at all between 2009 and 2015 (e.g. ES040,
ES080,ES091, ES122) and others include significant changes (e.g. +20% in ES060).
Particular concern has to be expressed on the deterioration forecasted in 2 GWBs each in
ES020 and ES070. In ES040, ES060, ES063, ES070, ES080, ES091 and ES100 relevant
improvements will only take place in the 3
rd
planning cycle by 2027, and no previous
milestones for improvements are reflected in the RBMPs.
Although the recovery of GWBs may be slow, the reflection of improvements only in the
third RBMP cycle does not appear to be based on a sound assessment.
Furthermore, ES120 does not establish objectives for a coastal HMWB. As informed
additionally by Spain (2014), the problem stems from inconclusive work on characterisation,
and definition of water bodies and their types. For this reason, it was not possible to
determine the status or calculate the objectives. However, there is a high number of new
infrastructures foreseen, in particular dams, and there seems to be no assessment of the
impact of those dams in the water bodies. Furthermore, in many cases the status of the
affected water bodies is unknown. For example, in ES091, a massive development of
irrigation is planned, while there are high percentages of water bodies in unknown status.
Until there is a complete picture of pressures, impacts and status, further development of
water uses may put at risk the environmental objectives of the WFD to an extent which is
unknown. The current setting of ecological flows (see further in chapter 12.3 in the 1
st
RBMPs) does not guarantee the achievement of the WFD objectives, as no clear links have
been established to the objective of good ecological status.
In general, the Strategic Environmental Assessments (SEA) carried out for the RBMPs
analyse the effects of 3 alternatives on the achievement of the established environmental
objectives for each water body, using modelling exercises in the RBDs. Nonetheless, it seems
that “non-deterioration” (WFD Article 4.1.a.i) of SWBs has not been analysed (e.g. ES020,
ES030, ES080, ES091), despite the large number of new water infrastructure included in the
RBMPs and their possibly associated increased pressures. According to the RBMPs, the only
indicators for the environmental monitoring and follow-up related to new dam infrastructure
(e.g. ES020, ES030, ES080 and ES091) is the “surface area occupied/flooded by new dams”,
without referring to more relevant indicators as included within the WFD’s quality elements,
such as fish or hydromorphology.
Protected Areas
In general, the RBMPs replicate the information contained in the specific legislation on PAs
regarding Drinking Water Protected Areas and other PAs. Some RBMPs quote the specific
physico-chemical values of the PAs. No information has been provided on how these specific
objectives relate to other water body-specific objectives within the RBMPs.
No mention has been found in the RBMPs regarding specific objectives for Protected Areas
included in the Habitats Directive, except ES080 that states that no specific objectives have
been set. In many RBMPs it is established that during drought events when water allocation
72
kom (2015) 0120 - Ingen titel
1925138_0073.png
will be reduced for water users, the proportional reduction of eflows in PAs shall be less than
for non-protected areas.
Protected Areas often lack specific water-management objectives. It is expected that the
RBMPs compile the existing information and identify gaps.It should be noted that in 2009 a
study on the ecological requirements of habitats under the Habitats Directive was published
by the Ministry for the Environment
28
, and no reference to it has been found in any of the
RBMPs.
More work is needed to ensure the protection of emblematic protected habitats dependent on
water. The water quantity and quality requirements of protected areas need to be assessed and
included as additional objectives in the RBMPs. Measures should then be taken to ensure that
the water dependent habitats and species can achieve favourable conservation status.
As regards the additional objectives for areas for shellfish production, the faecal coliform
parameter, which was required in the Shellfish Directive
29
, has not been kept in the Spanish
legislation. Microbiological standards should be included in the RBMPs to effectively ensure
the same level of protection for shellfish protected areas, now that the Shellfish Directive has
been repealed.
Articles 4(4) and 4(5)
Exemptions for extending deadlines according to Article 4(4) are foreseen for 1749 water
bodies, mostly RWB followed by GWB. The largest number applies to ES020, ES040 and
ES080. LWB exemptions are mainly applied in ES040, ES050 and ES100, and TWB and
CWB in ES100. In terms of percentage (Table 6.7), most exemptions under Article 4(4) are
applied in ES040 (72% of its SWB).
Several RBMPs postpone the achievement of the environmental objectives to 2021 and 2027
for significant number of water bodies. For these, none of the RBMPs reports on expected
achievements or milestones in the intermediate periods (cf. Article 4(4)d). Some RBMPs (e.g.
ES091) refer all temporary exemptions to 2027, without providing any indication of the
expected progress by 2021.
Less stringent environmental objectives (LSO) according to Article 4(5) are being applied to
a total of 195 water bodies, most of them RWB followed by GWB. The largest numbers in
RWB and GWB are applied in ES020. The methodology for applying LSO is described in the
IPH and is in general replicated by the RBMPs, and complemented with fiches for each of the
corresponding water bodies.
The justification of exemptions is insufficient. In most cases the exemptions are justified with
some generic statements, not based on an assessment of the measures needed to achieve good
status. Therefore, the RBMPs are not able to justify whether the measures are
disproportionately costly or technically unfeasible.
28
Ministry for the Environment (2009): Bases ecológicas preliminares para la conservación de los tipos de
hábitat de interés comunitario en España.
http://www.magrama.gob.es/es/biodiversidad/temas/espacios-
protegidos/red-natura-2000/rn_tip_hab_esp_bases_eco_acceso_fichas.aspx
29
Directive 79/923/EEC (codified 2006/113/EC), repealed in 2013 by the WFD.
73
kom (2015) 0120 - Ingen titel
1925138_0074.png
The methodology as presented in the RBMPs seems inappropriate. Indeed, instead of
focusing on identifying in the first place the measures needed to achieve the objectives, the
assessment starts by identifying as candidate for exemptions all water bodies that are in less
than good status considering the measures in place and some considered “viable” ex-ante
30
.
This process is not transparent and does not provide a sound basis for justifying the
exemptions according to the WFD requirements.
Article 4(4)
R
42
44
40
35
334
62
180
109
30
32
18
48
171
74
104
0
0
0
0
0
0
0
0
0
1
1324
L
1
0
0
2
0
6
44
16
1
0
0
4
12
0
17
0
0
0
0
0
0
0
0
0
0
103
T
0
4
2
3
0
0
0
10
0
7
8
0
4
0
16
0
0
0
0
0
0
0
0
0
0
54
C
0
10
0
0
0
0
0
0
0
0
2
4
10
0
14
0
0
0
0
0
0
0
0
1
0
41
GW
1
0
1
0
3
6
15
25
21
5
2
36
37
21
21
23
29
04
0
0
1
0
3
1
3
238
R
2
6
0
0
83
17
0
9
7
1
0
0
0
12
0
0
0
0
0
0
0
0
0
0
0
137
L
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
Article 4(5)
T
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
GW
0
0
0
0
14
0
0
0
5
2
0
10
3
2
0
3
80
40
0
4
0
0
0
0
0
43
RBD
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
Total
Table 11.1.1:
Exemptions for Article 4(4) and 4(5). R: rivers; L: lakes; T: transitional waters; C: coastal waters;
GW: groundwater.
Source:
WISE and RBMPs; information provided by Spain (2014).
30
See for example the way the methodology is explained in RBMP ES030 Tajo, chapter 8 Environmental
Objectives, page 80 and Annex VIII section 3.2.2 Objectives, extensions and less stringent objectives, page 10;
and RBMP ES091 Ebro, Annex VIII Environmental objectives and exemptions, chapter 3 Methodology, page
23.
74
kom (2015) 0120 - Ingen titel
1925138_0075.png
Global
31
RBD
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
Total
Technical feasibility
Article
Article
4(4)
4(5)
38
2
74
56
43
40
6
169
28
74
1
0
0
24
32
128
0
8
0
0
0
0
0
0
4
5
730
7
0
0
98
18
0
10
7
2
0
0
3
4
0
0
0
0
0
4
0
0
0
0
0
155
Disproportionate costs
Article
Article
4(4)
4(5)
0
1
0
0
0
337
68
79
136
0
28
6
125
256
52
166
1
9
0
0
0
0
0
0
0
2
1265
0
0
0
66
0
0
0
11
1
0
10
0
10
0
0
0
0
0
0
0
0
0
0
0
99
Natural conditions
Article
Article
4(4)
4(5)
13
0
0
1
0
2
0
0
0
0
48
77
0
0
25
28
2
0
4
0
1
0
0
3
0
0
204
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 11.1.2:
Numbers of Article 4(4) and 4(5) exemptions
Source:
WISE and RBMPs; information provided by Spain.
Disproportionate cost (1256) is the major reason for applying Article 4(4) exemptions,
followed by technical feasibility (722). The picture is varied across the Spanish RBDs, with
some applying both (e.g. ES100), some only technical (ES014 and ES018), economical
(ES070) or mainly natural (ES064, ES122) reasons. It appears that the criteria for applying
the different justifications differ considerably among RBDs. However, for applying
disproportionate costs, the RBMPs generally lack a proper economic analysis that justifies
each exemption. In some RBMPs (e.g. ES122) the reasons are not justified nor adequate:
despite significant agricultural water abstraction, and both point source and diffuse pollution,
the RBMP identifies natural reasons as the cause for not achieving good quantitative or
chemical status.
31
Exemptions are combined for ecological and chemical status
75
kom (2015) 0120 - Ingen titel
1925138_0076.png
Figure 11.2.1: Numbers of Article 4(4) and 4(5) exemptions
T = Technical feasibility
D = Disproportionate costs
N = Natural conditions
Source:
WISE. No data available for ES150 and ES160.
Article 4(6)
In general, criteria for triggering exemptions under Article 4(6) have been included in all
RBMPs. No Article 4(6) exemptions have been applied so far.
ES030 lists provisionally all areas identified under the Floods Directive as potentially under
risk (of possible exemptions under Article 4(6)).
Article 4(7)
Most RBMPs state that there is the possibility of applying exemptions for new modifications,
and provide examples of conditions and examples of those modifications. However, none of
these RBMPs or PoM include any case for which this exemption will be applied to any water
body. According to additional information from Spain, this applies to 3 water bodies in
ES018: Estuario de Avilés, Bahía de Santander-Puerto (TW HMWBs) and Cuenca
Carbonífera Asturiana (GWB).
Some other RBMPs (e.g. ES020, ES060, ES064, and ES091) already provide a list of those
(infrastructure work) modifications that are forecasted to be considered under Article 4(7)
though no further information or justification is given. ES020 argues that the Feasibility
reports under Article 46.5 of the Spanish Water Law should be sufficient to justify Article
4(7) exemptions, though these reports do not cover all the requirements of the WFD and are
not included in the RBMPs.
It is especially worrying the high number of planned infrastructure projects, in particular
dams, for which Article 4(7) has not been applied. According to the WFD, the infrastructure
that has not yet been constructed and is liable to cause deterioration of the status of water
bodies or prevent the achievement of the environmental objectives can only be executed if the
conditions of Article 4(7) are fulfilled.
76
kom (2015) 0120 - Ingen titel
In ES124, the Port of Granadilla, already under construction, is designated as HMWB and
two other areas are labelled as 'candidate' because new ports are planned; these kind of ex-
ante designation of HMWB are not in line with the WFD. The relevant provisions for new
modifications in the WFD are the non-deterioration obligation in 4(1) and Article 4(7). In
ES127, and although Article 4.7 is not applied, some considerations are made,
misinterpreting the requirements of the WFD: first, it is satated that the concept only applies
to alterations carried out after the RBMP; second, that the declaration of general interest and
the associated environmental and socio-economic assessment allows to avoid any specific
justification analysis.
The normative part of the RBMPs includes an article on the conditions for new modifications
that circumvent the application of article 4(7) to all measures included in the programme of
measures. This is clearly not in line with WFD, considering moreover that many of the
measures included in the Spanish programmes of measures are not linked to the achievement
of environmental objectives, but constitute new infrastructures for exploitation of water
resources. Therefore exempting e.g. the dams included in the programme of measures from
justification under article 4(7) because they are included in the plan is clearly in contradiction
to WFD obligations.
Exemptions under the Groundwater Directive
No information is included in the RBMPs on exemptions under Article 6 of the Groundwater
Directive.
PROGRAMME OF MEASURES
Programme of Measures - General
Usually, the PoM constitutes an Annex of the Spanish RBMPs with vast information, and
often several Appendices. In general, there is no evidence in the RBMPs of transboundary co-
ordination of the PoMs or individual measures (e.g. ES018, ES030, ES091), though co-
operation meetings were held in some of the basins in the frame of the international
agreements and/or at technical level.
The PoMs classify measures regarding topics/problems (usually “achievement of
environmental objectives”, “satisfaction of water demand”, “risk management – floods and
droughts” and “knowledge and governance”, though this grouping is slightly different
between the individual plans). It is complex or impossible to understand how the PoMs are
linked and respond to the identified pressures and to the status assessment, and how the
measures ensure the achievement of objectives. The measures to satisfy water demand –
which use on average nearly half of the PoMs budgets - are not targeted to the WFD
objectives, and might even hamper their achievement (see section 11.5). According to
aggregated information provided by Spain, measures addressing the WFD environmental
objectives make up 46% of the PoMs budgets, measures for water supply 42%, floods and
droughts a 9% and 3% is targeting knowledge and governance. In some RBDs (e.g. ES123,
ES127), water supply accounts for more than 75% of the already invested budget (note that
the Canary Island RBMPs were only adopted in 2015, with a PoM timeline usually for 2009-
77
kom (2015) 0120 - Ingen titel
2015). ES123 targets only 4% of its budget directly to the achievement of the WFD
environmental objectives.
Among the measures considered by the RBMPs as contributing to the environmental
objectives, there are many for which their contribution to achieve good status is unclear. In
particular the modernisation of irrigation takes a significant percentage of the budget of the
measures to achieve environmental objectives, but its contribution is generally not assessed
and not quantified. There are general statements that such measures contribute to the WFD
objectives, but these are not justified (see below section 12.2 Measures related to agriculture).
The RBMPs are based on estimates and standard data on water uses ('dotaciones') and not on
real data on consumption because the use of metering is not generalised, in particular in
agriculture. Despite the requirement in the water law to install and maintain meters, this is not
enforced and implemented, and hence there is a lack of real data on consumption and a lack
of adequate control on water use.
Often, measures are not related to specific water bodies. Modelling has been used to explore
the impact of different scenarios of measures, and the specific methodology and decision-
support-tools are often included in the Annexes of the RBMPs. Nonetheless, usually the
modelling results (for the different options) have not been published, resulting in a non-
transparent exercise. Measures to achieve environmental objectives and measures to satisfy
demands are assessed together, again not contributing to present a transparent picture of what
is needed to achieve good status.
In general, uncertainty is not considered regarding the results of the measures (e.g. ES070,
ES080, ES091, ES120, ES124), except regarding climate change (e.g. ES017, ES110),
though only in an ambiguous sense.
The budgets of the PoMs vary between 150 and 7000 MEUR for the first cycle; and between
1000 and 18000 MEUR for the overall period from 2009-2027. It should be noted that these
figures include “non-WFD-targeted” water supply infrastructure works, which are considered
in the Spanish legislation as part of the RBMPs, and as stated above, in some RBDs cover a
significant proportion of the overall budget (e.g. ES091 these measures are expected to
increase water availability by estimated 2000 hm
3
/year – a 20 % increase compared to current
abstractions). Some PoMs provide information on the character of the measures (basic,
complementary), but for some RBDs (e.g. ES122, ES123, ES127) even include measures
such as to reduce the energy costs of water users by employing renewable energies, which is
neither targeting the WFD objectives nor water supply.
Some RBMPs (ES122, ES126) do not provide a clear budget figures.
At the same time budget constraints are referred to as being responsible for the reduction in
the ambition of the PoMs and the achievement of WFD environmental objectives.
78
kom (2015) 0120 - Ingen titel
1925138_0079.png
RBD
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
Budget first
planning cycle
MEUR
929*
330 (1272*)
1168
1461
1497
4354
798
1747
2818
338*
372*
1950
2020
3915
6269*
145
64 (128*)
12?
40*24
460
40
19
4.6
Public
funding
(%)
66,5
71
90
100
Private
funding
(%)
1
1.7
10
0
EU funds
considered
(%, Y/?/N)
32,5
Y
?
?
Y
Budget all planning
cycles MEUR
988
1358 (1392*)
2790 (2610*)
2353
4200
8246
4040
4099*
5100
98
98
?
100
81
2
2
?
0
19
?
0
Y
?
Y
Y
?
1417
1376
4818
5459
18112*
6269*
2722
64 (128*)
569
9
100
0
Y
-
129
Total
31543*
Table 12.1.1:
Budget and sources of funding
74209*
Source:
RBMPs and information provided by Spain in 2014 (*)
RBD
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
Environmental
%
objectives
670
1180
1383
1630
1991
4390
1968
1643
68
85
53
69
47
53
49
40
Water
supply
258
146
651
468
2064
3633
1651
2026
%
26
11
25
20
49
44
41
49
Floods &
Droughts
36
24
521
124
10
0
380
348
%
4
2
20
5
0
0
9
8
Knowledge
and
%
governance
23
40
54
129
133
222
41
81
2
3
2
5
3
3
1
2
Total
987
1390
2609
2351
4198
8245
4040
4098
79
kom (2015) 0120 - Ingen titel
1925138_0080.png
RBD
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
Total
Environmental
%
objectives
1377
298
249
1994
1396
8958
2817
1287
27
21
18
41
26
49
45
47
Water
supply
2797
625
748
1997
2756
7502
3113
540
%
55
44
54
41
50
41
50
20
Floods &
Droughts
712
461
347
528
1098
1400
339
512
Knowledge
%
and
%
governance
14
33
25
11
20
8
5
19
213
32
31
298
209
251
0
382
4
2
2
6
4
1
0
14
Total
5099
1416
1375
4817
5459
18111
6269
2721
1
4
18
73
0
0
5
23
24
1.5
182
466
33880.5
72
76
46
5
55
83
31118
22
14
42
12
15
64
6931
6
10
9
0.08
1
1
2141.08
0
0
3
19
253
614
74071
Table 12.1.2:
Budget distribution across major action lines (in MEUR)
Source:
Information provided by Spain (2014), and RBMPs ES123 and ES126.
The timeline for the PoMs varies significantly, and in general the plans include measures for
2006-2010 (ES100), 2009-2015 or 2010-2015 (though the plans have been approved later
than 2009) or 2014-2015 (for ES123, approved in 2015), and usually also for a latter period
(after 2015, after 2016, 2015-2021 and 2022-2027, or 2016-2021). A more detailed timeline
is usually not included in the PoMs. Note that some PoMs (e.g. ES017, ES091 and ES100) do
not refer to the 2016-2027 or 2022-2027 periods, but additional information has been
provided by Spain (2014) as included in table 12.1.1. Note additionally, that no PoM is in
place in the Canary Islands (ES12X) as the 1
st
cycle RBMPs establish PoMs only until 2015,
and no 2
nd
cycle RBMPs have been approved yet. Almost all plans argue that due to the
economic situation, significant changes in the implementation of measures might be possible.
Some plans (e.g. ES070, ES080) include a brief analysis of the budgetary capacity of the
involved authorities.
Considering the expected (limited) improvements and the costs, the cost-effectiveness ratio of
the 2009-2015 RBMPs appears quite low. The RBMPs might have to explore other less
expensive and more effective measures to achieve their objectives, in particular those RBMPs
that expect the most relevant achievements of WFD objectives only in the third planning
cycle.
The main sources for funding are public authorities, namely the national authorities, followed
by regional and local authorities. In some plans no specific division (overview) has been
provided. Some plans (e.g. ES017, ES080) include for a minor proportion of the budgets a
80
kom (2015) 0120 - Ingen titel
1925138_0081.png
still unknown ownership by assigning budgets to “public authorities to be determined”.
Private contributions are only marginal, except in ES091, where it makes up 19 % for 2010-
2015. Some RBMPs mention the sources from EU co-funding namely ERDF, EARDF, and
LIFE (Table 12.1.1).
Some plans (e.g. ES017, ES030) mainly define infrastructure investments, and do not budget
in the RBMP other measures (e.g. governance or training activities), as they might not have
been precisely defined, no direct effect on the status of water bodies is foreseen or they
belong to “general administrative actions”. According to additional information by Spain
(2014), PoM in ES017 includes 54 MEUR and in ES030 422 MEUR to measures related to
governance and knowledge.
The information available in the PoMs regarding the details of the measures (e.g.
geographical area - RBD, regional, sub-basin or water body levels -, funding and/or
implementing authority, costs and timing) is quite extensive for some RBDs (e.g. ES040,
ES091) but scarce for others (e.g. ES017, ES018, ES070). Usually measures are not linked to
water bodies (exception e.g. ES091), and are unclear regarding the pressures or economic
sectors (exception e.g. ES080) they address. In some cases, the PoM provides separate data
on basic, other basic, supplementary and additional measure groups (e.g. ES018). In others
this information is provided individually but not as an overview (e.g. ES080).
Effectiveness of measures is assessed using modelling tools such as AQUATOOL,
AquaToolDMA, GESCAL and PATRICAL. Some RBMPs include the results of the
assessment for the combination of measures considered in different scenarios (e.g. ES070)
and only a few include measure-specific analysis (e.g. ES050). A number of RBMPs make
only general methodological statements (e.g. ES017, ES030, ES080, ES091, ES110, ES122,
ES123) without referring to the evaluated alternatives and/or results of these simulations. In
many RBMPs it is neither clear how measures relate to water bodies nor how much of the
gap to achieve good status is being bridged by the different measures. Therefore the analysis
lacks transparency. Moreover, it is not clear how the selection of measures to be considered
has been done, or why some measures have not been considered at all.
A quite common feature in the RBMPs is the interdependency between RBDs (ES017,
ES018, ES040, ES070, ES060, ES080, ES091 and ES100) on transferred water from other
basins (ES030, ES091). ES070 states clearly that the environmental objectives will only be
(technically, economically) achieved if an additional water transfer of minimum 400
hm
3
/year from ES030 or other basins is ensured.
Important gaps have been identified in the application of basic measures related to urban
waste water treatment, in particular concerning the compliance with Urban Waste Water
Treatment Directive
32
.
Measures related to agriculture
The following table includes an overview of which measures are considered in the RBMPs
regarding agriculture. In general, the variety of measures included is rather poor and focused
32
See latest Commission implementation report: Seventh Report on the Implementation of the Urban Waste
Water
Treatment
Directive
(91/271/EEC),
COM(2013)574
available
at
http://ec.europa.eu/environment/water/water-urbanwaste/implementation/implementationreports_en.htm
81
kom (2015) 0120 - Ingen titel
on abstraction controls, irrigation efficiency and re-use, and sometimes unclear measures
(e.g. ES018) on pollution reduction. Though there is detailed information on the expected
gross water savings by measures of irrigation efficiency, the contribution of each measure to
achieving the objectives is generally not specified.
82
kom (2015) 0120 - Ingen titel
1925138_0083.png
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
Measures
Technical measures
Reduction/modification of fertiliser
application
Reduction/modification of pesticide
application
Change to low-input farming (e.g.
organic farming practices)
Hydromorphological measures
leading to changes in farming
practices
Measures against soil erosion
Multi-objective measures (e.g. crop
rotation, creation of enhanced
buffer zones/wetlands or floodplain
management)
Technical measures for water
saving
Economic instruments
Compensation for land cover
Co-operative agreements
Water pricing specifications for
irrigators
Nutrient trading
Fertiliser taxation
Non-technical measures
Additions regarding the
implementation and enforcement of
existing EU legislation
Controls
Institutional changes
?
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
83
ES160
kom (2015) 0120 - Ingen titel
1925138_0084.png
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
Measures
Codes of agricultural practice
Farm advice and training
Raising awareness of farmers
Measures to increase knowledge for
improved decision-making
Certification schemes
Zoning (e.g. designating land use
based on GIS maps)
Specific action plans/programmes
Land use planning
Technical standards
Specific projects related to
agriculture
Environmental permitting and
licensing
Others
(e.g. new water supply
infrastructure)
Source:
RBMPs
Y
Y
Y
Y
?
Y
Y
Y
Y
?
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
?
Y
Y
Y
Y
Y
Y
Y
Y
Y
Table 12.2.1:
Types of WFD measures addressing agricultural pressures, as described in the PoMs
84
ES160
kom (2015) 0120 - Ingen titel
In general, no specific scope is given for the measures. The timing for the implementation is
often missing or refers generically to first cycle versus other planning cycles, based on the
information in the PoMs budgets, and bearing in mind that for many measures specific
budget allocations are missing. Specific information on the control of the implementation of
agricultural measures is generally not provided.
A key measure in many RBMPs is increased efficiency of water usage in agriculture, by
improving/changing supply infrastructure (e.g. ES070, ES080, ES110, ES120, ES125,
ES126, ES127), and the plans usually refer to gross water savings that are transferred to the
water balances. In some cases (e.g. ES080) a gap between gross and net savings is
recognised, but not quantified. In consequence, the RBMPs are lacking a detailed justification
on how these measures contribute to the achievement of the WFD objectives. Given the
increases in efficiency, the consumption of water after modernisation can increase, even if
abstraction decreases. In these cases the overall pressure on water resources would actually
increase after modernisation. Effective reduction of water consumption pressures from
agriculture is largely not demonstrated in the RBMPs; and a systematic review of water rights
adapted to WFD objectives appears to lack in all RBMPs. In the public consultation process,
many stakeholders have expressed their concerns regarding the effectiveness of these
measures, and the lack of clarity regarding net water savings and the lack of clarity on the
possible review of related water rights to ensure that efficiency measures contribute to
environmental objectives. Some RBMPs (e.g. ES123) even include new irrigation
developments as measures, though they should rather be considered as pressures.
Water re-use in agriculture is also a measure included in a large number of RBMPs aimed at
ensuring a quantitative water balance. Regarding some specific measures, ES110 establishes
water re-use and savings in the PoM though data contradictions and inconsistencies have
been identified.
Measures against erosion are largely lacking in the RBMPs, and it is furthermore unclear how
effectively the PoMs will contribute to reduce diffuse pollution pressures. Basic measures to
address diffuse pollution should go beyond the Nitrates Directive codes of practice, which are
voluntary instruments limited to nitrates, but not addressing other diffuse agricultural
pressures.
Measures related to hydromorphology
The following table includes an overview which measures are considered in the RBMPs
regarding hydromorphology.
85
kom (2015) 0120 - Ingen titel
1925138_0086.png
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
Measures
Fish ladders
Bypass channels
Habitat restoration, building
spawning and breeding areas
Sediment/debris management
Removal of structures: weirs,
barriers, bank reinforcement
Reconnection of meander bends or
side arms
Lowering of river banks
Restoration of bank structure
Setting minimum ecological flow
requirements
Operational modifications for
hydropeaking
Inundation of flood plains
Construction of retention basins
Reduction or modification of
dredging
Restoration of degraded bed
structure
Remeandering of formerly
straightened water courses
Other (restoration of transitional
and/or coastal waters)
Source:
RBMPs
?
?
?
Table 12.3.1:
Types of WFD measures addressing hydromorphological pressures, as described in the PoMs
86
ES160
kom (2015) 0120 - Ingen titel
1925138_0087.png
The main measure groups foreseen in the RBMP are river restoration actions (such as e.g.
under the Spanish Strategy for River Restoration, including habitat restoration, the removal of
un-used infrastructure or the construction of fish ladders), as well as the establishment of
ecological flows (eflows), and some habitat restoration in coastal and transitional waters.
Environmental water allocation is a mandatory component of Spanish RBMPs, though non-
accomplishment of currently established regimes is also explicitly recognised in some
RBMPs (e.g. ES050, ES091). Eflows have been established according to the Spanish
legislation (Water Law, RPH and IPH) in all RBMPs for some river stretches, and are
currently in different stages of their process of implementation.
Though most Spanish RBDs have assessed eflows, the level of ambition is uneven.
According to the Spanish legislation (IPH), eflows regimes should consist not only in a fixed
minimum flow throughout the year, but also include prescriptions for its seasonal
distribution. Downstream water infrastructures, other eflows components such as a maximum
flow, a flooding regime and a rate of change shall be assessed and fixed if appropriate.
Minimum flows have been established by direct hydraulic and habitat modelling studies or
extrapolation for approximately 2200 strategic SWBs, so that they effectively condition water
allocation in the basin (sometimes also including some wetlands e.g. ES040, ES060, ES070
or ES080). The regulatory weight of the rest of the eflows components varies substantially
from full adoption in ES040 to a purely indicative role in ES080, while most RBMPs have
not finished the assessments or are still pending agreement with stakeholders.
Some plans from Northern Spain (ES010, ES017 and ES018) include an explicit ban on
exploitation patterns of hydropower facilities causing sharp hydropeaking.
There is also a great variety of formulas to regulate how eflows regimes will affect existing
water rights. In any case, and in accordance with the Spanish Water Law, the priority of
drinking water supply is reinforced by the RBMPs.
The regulation of eflows in the Spanish legislation is one of the most comprehensive across
the EU and, in the Spanish implementation context, it is considered an essential tool to link
the quantitative water management with the WFD environmental objectives. However, the
relationship between the eflows and the WFD objectives is unclear.
The definition in the Water Law
33
states that eflow is the “flow that maintains, as a minimum,
fish life that would naturally live in the river, as well as the riparian vegetation”. In the RPH
the definition is expanded with a reference to “contribute to achieving good ecological status
or potential in rivers or transitional waters”
34
. The IPH reproduces the same definition but
further expands it in the main text
35
to include as an additional objective the protection of
habitats and species protected under nature legislation. Furthermore, the IPH defines water
bodies “with very altered hydrology” as those suffering from “severe hydrological alteration
in the current situation, presenting conflicts between existing uses and the eflows regime”.
The criteria for setting eflows are less stringent in these water bodies. This appears to mix
33
34
35
Article 42.1.c’ of Consolidated Water Law approved by Legislative Royal Decree 1/2001.
Article 3.j of Planning Regulation approved by Royal Decree 907/2007.
IPH 1.2.15 and 3.4.1.1.
87
kom (2015) 0120 - Ingen titel
1925138_0088.png
ecological criteria and socio-economic considerations in a not completely transparent way
36
.
Moreover, there is no clear separation between the technical studies that would define the
eflow compatible with achieving good ecological status and the consensus building process
(“concertación”) that underpins the final definition and implementation of the eflow. As a
result, the process lacks transparency on the relationship between the final eflow and the
achievement of WFD objectives and, in particular, there is no clear relationship between
eflows and good ecological status.
Furthermore, protected areas, their habitats and species have only taken into account in a
limited way. The derivation of eflows has considered only three fish species listed in the
Birds and Habitats Directives (Petromyzon
marinus, Alosa
sp,
Chondostroma
sp.).
As mentioned previously, a large number of new dams and other “grey” water infrastructure
(often with unclear descriptions in the PoMs) are foreseen to minimise the flood risks (e.g.
ES126). It is unclear if alternative options like the restoration of floodplains, reduction of
dredging and/or remeandering have been considered beyond the few currently existing
initiatives (ES020: Órbigo; ES091: LIFE+ Mink Territory project), and if urban and land-use
planning measures as promoted by the Floods Directive have been evaluated when setting up
the PoM. It has also been noted that despite the large amount of existing water
infrastructures, flooding events are common throughout Spain in the past years, even
downstream of existing dams (e.g. ES050, ES063, ES091).
Measures related to groundwater
In general, the reported basic measures related to groundwater are those already established
by the Spanish legislation before the WFD implementation process. They cover the
authorisation procedure and control of abstractions, as well as of point-source discharges.
Nonetheless, the effective control of abstractions is still an issue to be resolved. Despite the
Spanish Water Law is in place now for almost 30 years, there are still thousands of water
rights not included in the electronic databases of the Water Register, which according to the
information provided by Spain is only due to completion by 1 January 2020
37
. Furthermore,
there is recurrent evidence of significant illegal water abstractions in water-scarce areas (e.g.
ES050, ES040), and it is unclear if the measures of the RBMPs will effectively address this
issue.
The Spanish law includes the mechanism of “declaration of overexploitation”. This measure
reinforces the administrative control of abstractions in areas where abstraction exceeds
natural recharge and therefore there is a situation of poor quantitative status of aquifers. This
declaration, however, is not compulsory but can be used at the discretion of the river basin
authorities. In some basins this is being used significantly (e.g. ES040, ES070, ES124) but in
36
This 'ex-ante' combination of ecological and socio-economic considerations seems difficult to reconcile with
the WFD approach, that clearly separates in different steps the definition of the environmental objective of good
status, which is only based on ecological criteria (WFD Article 4(1) and Annex V), and socio-economic
considerations, which play a role in applying the exemptions (WFD Articles 4(3) to 4(7)). It should therefore be
clear how far the application of exemptions in particular water bodies makes the environmental objectives
depart from the default objective of good status.
37
Date included in the Royal Decree 670/2013.
88
kom (2015) 0120 - Ingen titel
others with severe problems of overexploitation is not (ES110, ES060, ES050). In ES110 the
RBMP even allows granting new concessions for abstractions in groundwater bodies that are
in poor quantitative status, which seems to go against any logic of protection of the resource
included in the WFD.
Some RBMPs (e.g. ES040, ES080, and ES110) foresee the shift of GW abstractions from one
GWB at risk to another one currently in good quantitative status. Some others foresee a shift
from GWB abstraction to surface water supply (e.g. ES070, ES080) or to reuse or desalinised
water (e.g. ES120, ES124).
In some RBMPs, supplementary measures have been defined like aquifer recharge (e.g.
ES020, ES070, ES080, ES122, ES123).
Usually, no RBD-specific measures have been identified to prevent inputs into groundwater
of any hazardous substance (from diffuse or point sources; exception e.g. ES017), but the
Spanish licensing system for control of effluents addresses this issue.
Measures related to chemical pollution
The existing regime of authorisation for control of point source discharges was in place
before the adoption of the WFD.
The following measures have been identified in the RBMPs to deal with chemical pollution:
subsidies to industry to improve wastewater treatment to more stringent levels than those
imposed by the WFD (ES100); decontamination of a river polluted by priority substances due
to industry (ES100); reduction of the pollution caused by salt mining in some river basins
(ES100); measures to control pollution from petrol stations (e.g. ES030).
Measures to reduce/phase-out the emissions of specific pollutants have not been identified in
the PoMs.
Measures related to Article 9
Water pricing measures in the RBMPs largely draw on the cost recovery instruments that
were introduced by the Water Law in 1985, which have remained largely unchanged since
then. These ensure a contribution from users to capital and operation costs of publicly built
large infrastructure for the use of surface water such as dams and main distribution canals.
In addition, a number of regional authorities have introduced cost recovery instruments,
mostly to recover costs for drinking water supply and wastewater treatment (e.g. Catalonia,
Andalucia, Galicia, Basque Country, Asturias) but some also for other uses (e.g. Galicia for
hydropower). The nature and composition of these instruments is very variable. The
information in the RMBPs is generally scarce, mostly limited to listing the references to the
regulations establishing the instruments without further analysis (see below).
In 2012 a national tax on hydropower was introduced for the protection of water resources,
although paradoxically the revenue goes into the general budget with only 2% of the tax
incomes are specifically earmarked for the River Basin Authorities. There is furthermore
scarce information about existing (and planned) water pricing systems and tariffs, in
particular regarding agriculture where a large variety of systems still co-exist (charging on
the basis of surface, time or water consumption).
89
kom (2015) 0120 - Ingen titel
The Water Law Article 40.j and the IPH (Chapter 1.2.61) define water uses as different types
of water consumption and uses that affect significantly the water status. Some RBMPs (e.g.
ES040, ES063, ES064, and ES091) provide longer lists of uses, including e.g. fisheries,
aquaculture, salt abstraction, navigation and recreational activities. It is often not specified in
the RBMPs how the identification of uses is related to the analysis of pressures in the RBD.
The Water Law Article 40bis.i and the IPH 1.2.61 define water services as those activities
that enable the use of water such as abstraction, storage, conduction, and treatment or the
discharge; as well as the protection of humans and goods against floods. In the RBMPs, there
is no homogeneous picture, and sometimes the services are more similar to the “uses” terms.
In most of the RBDs, “environmental protection” (e.g. ES010, ES014, ES020, ES060, ES070,
ES080, ES091, ES110), “flood protection” (e.g. ES080, ES091) and “water administration”
(e.g. ES014, ES018, ES020, ES060, ES063, ES064, ES080, ES091) are also considered as
services. Self-abstraction is a significant aspect in many RBDs, in particular for irrigation and
industry, and only in some RBMPs (e.g. ES020; vs. ES080, ES110) considered as a service
where costs could be recovered.
Cost recovery is considered in the Spanish legislation (Article 42.1 RPH, Regulation for
Hydrological Planning, RD907/2007) as an element that “should be taken” into
consideration; and specific regional legislation has been developed in Andalucía, Galicia,
Catalonia and the Basque Country. Furthermore, documents compiling economic information
have been developed and used as a basis for the RBMP development (“Precios y costes de los
servicios de agua en España” (2007) and “Análisis de presupuestos y recuperación de costes
por los servicios de agua en España” (2009)).
Regarding cost recovery, usually urban water supply, industrial uses and agriculture are
considered in the RBMPs, with some differences due to basin-specific circumstances (e.g.
ES014 not considering agriculture and adding “other uses”, ES020 considering hydropower,
ES040 not considering industry, and ES060 adding “golf”). Although explicitly included in
the definition of water services in the Spanish legislation, costs for “flood protection” are not
recovered as it is considered of general interest.
Frequently there are no adequate incentives for farmers to use water efficiently as the water
consumption is, to a large extent, not measured and therefore water charges are not linked to
real consumption. There are no charges for self-abstraction, except those incurred by the user
related to pumping and distribution. Energy cost of abstraction does not seem to provide an
adequate incentive as it has not been able to prevent the over-abstraction of numerous
groundwater bodies (more than 200 GWB are in poor quantitative status, Table 6.6). The
environmental and resource costs are high (large percentages of water bodies in less than
good status) but they are not recovered either. Moreover illegal water abstraction is an
important obstacle for efficient water policy.
A large number of discounts are being applied when calculating cost recovery. According to
the Article 7.3 IPH, flood protection, and future water users (e.g. of dams) are not considered
as recoverable costs, and different estimations are developed in the plans, though the
information is not always easy to identify. The discounts for flood protection in dams are not
justified and appear arbitrary. In some basins is always a fixed percentage (e.g. 50% in
ES040), in others depend on the dam (e.g. ES050) and can even evolve within the life cycle
of the project (e.g. ES091 for Biscarrués dam, which has changed from 35% in the EIA
statement to 60% in the RBMP), in other basins is zero (ES020). A discount of ca. 80%
90
kom (2015) 0120 - Ingen titel
1925138_0091.png
appears to be applied in one specific case in ES080, including 50% discount due to “over
sizing of the infrastructure”
38
.
Another “discount” that is often applied to new dams is due to “maintenance of ecological
flow” due to its “general character”. This is often presented as a “benefit” of the dam.
According to WFD, the establishment of eflow in a new dam should be a mitigation measure
that should be taken according to article 4(7)a and would therefore form part of the objective
of achieving GEP.
In general, and except in a few RBMPs (e.g. ES020 and ES070), no cost recovery has been
estimated for hydropower and agricultural self-supplies.
Cost recovery has been calculated based on supporting documents, case studies (e.g. Besaya
in ES018), estimates and voluntary surveys e.g. with irrigator communities, although often
hindered by low return rates. Lack of (co-ordinated) data is a recognised problem (e.g.
ES080, ES091) and in consequence only estimations have been realised when addressing
local urban or agricultural services (e.g. ES091). In some plans (e.g. ES091) the cost recovery
calculations cannot be easily related to the services (information is only provided for
yes/no/partial) or users.
In many RBMPs (e.g. ES030, ES040) prices and revenues from the cost recovery instruments
applied in urban water supply and sanitation cycle are estimated on the basis of the data from
the Spanish Association of Water Supply and Sanitation
39
companies. It is not clear why real
data is not provided by the regional and local authorities responsible for these instruments.
The uncertainty of the source data (it is based on a voluntary survey) and the extrapolations
made, together with the assumption that revenues match the real costs, raise questions about
the reliability of the information and the cost recovery calculations. Moreover, the situations
within the same RBD can be very different, because there is no basic national legislation that
regulates the cost recovery in the urban cycle. Many regions have developed different cost
recovery mechanisms that generally are listed in the RBMPs without further analysis of the
level of cost recovery on the basis of real data. The way the analysis is presented in the
RBMPs generally hides those potential differences.
In general, financial costs are considered and include capital costs for new investments,
operating costs, maintenance costs, and administrative costs. Regarding the consideration of
subsidies in the cost recovery calculations, there is often no explanation given; though e.g.
ES020 includes an example of subsidies in the RBMP. In particular, possible cross-
subsidising between sectors (e.g. in cases where urban water users pay higher costs for
desalinised seawater, due to the reduced water availability in GWB and SWB over-exploited
by agricultural consumption) is not reflected in the RBMPs, except ES123 which identifies
subsidised tarrifs for agriculture using desalinised water.
According to the IPH 7.4, environmental costs are calculated on the basis of the cost of
measures to achieve the environmental objectives. Most of the RBMPs simply replicate the
legal text without further considerations (e.g. ES050, ES060, ES063, and ES064) or indicate
that calculations have been undertaken but without providing further data (e.g. ES126).
38
ES080 RBMP Annex 9 on cost recovery argues that only 50% of the Arenós dam is being used by the water
users; nonetheless RBMP Annex 6 on water balances uses the full capacity of the dam
39
Asociación Española de Abastecimiento y Saneamiento (AEAS)
91
kom (2015) 0120 - Ingen titel
Environmental costs have been calculated (partially) in ES010, ES020, ES070, ES091 and
ES110; ES070 and ES091 present a raw figure (without references/sources) for estimating
but without referring to the corresponding cost recovery; and in ES110 the costs refer
explicitly to "the cost to comply with the current legislation (except WFD)" and were not
calculated for agriculture. In general environmental costs are calculated for the wastewater
treatment (i.e. urban cycle) but not for agriculture, despite significant pressures and impacts
(abstraction, pollution) caused by this sector.
According to the Spanish legislation, resource costs shall be analysed by the market value of
water, and only in some RBDs a quite academic analysis has been carried out (ES020, ES070
and ES080 which provide figures – 0.13 to 0.28 EUR/m
3
) without applying the concept
further or discuss any instrument that would recover such costs. Several RBMPs refer to the
fact that no water trading has happened in previous periods.
In general and apart from overall statements, no details are provided in the RBMPs on how
water pricing fosters resource efficiency, nor on the application of the polluter-pays principle
(except ES080 including a specific measure addressing coastal water pollution). Some
RBMPs (e.g. ES126) state clearly that the current water pricing does not foster efficiency.
The values in table 12.6.1 have mainly been provided by the Spanish authorities.
92
kom (2015) 0120 - Ingen titel
1925138_0093.png
ES010
ES014
ES017
ES018
ES020
ES030
ES040
ES050
ES060
ES063
ES064
ES070
ES080
ES091
ES100
ES110
ES120
ES122
ES123
ES124
ES125
ES126
ES127
ES150
ES160
Environmental
costs considered
Y
N
N
N
Y
Y
Y
N
N
N
N
Y
Y
Resource costs considered
N
N
N
N
Y (zero cost)
N
Y
N
N
N
N
N (3)
N
N
N
N
N
N
N
N
N
N
Overall %
cost recovery
24.0–34.1
48.0
42.0–52.0 (1)
45.0–56.0 (2)
45.8–61.8
75.0–77.0
81.0–89.0
85.2
84.2
-
-
(4)
85.0
-
-
77.0
68
95
15.0–21.0
-
-
CR % urban
water services
33.8
48.0
39.0–49.0
40.0–50.0
46.3–67.3
78.0
81.0
84.5
85.7
92.8
94.6
88.4
86.0
57.0
86.5
78.0
75
77(?)
91
55.0–76.029
57.2
-33.2
CR %
agriculture
18.8
-
39.0–48.0
43.0–53.0
39.7–46.6
59.0
81.0
77.9
78.0
76.7
90.5
85.7
80.0
80.0
-
75.0
39
33
107
73.0
10.7
32.0
CR %
industry
99.8
71
93
81.2
64.8
81
96
86.8
93.2
92.8
96.3
88.38% (&
urban)
CR % others
-
(71, domestic)
(31, other uses)
-
82.5
64.3
100
-
-
100
68.0
55.0
19-25 (5)
N
N
N
N
N
N
N
N
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Source:
Information provided by Spain (2014), except for ES12X where the RBMPs have been taken as source. Notes on the table: The intervals correspond to different considerations
regarding the services when calculating cost recovery and, in general, regarding inclusion or non-inclusion of the environmental costs. (1): The figures rise greatly, if the demand supplied is
included. The total figure to 79.0–82.0. (2): The figures rise greatly, if the demand supplied is included. The total figure to 73.0–78.0. (3): The analysis does not take into account cost recovery.
It is estimated that it could reach 0.20–0.28 €/m
3
. (4): Value disaggregated by uses. (5): Raw water service. As regards ES123, note different figures are provided in the RBMP.
Table 12.6.1.
Cost recovery in the RBMPs.
93
kom (2015) 0120 - Ingen titel
CLIMATE CHANGE
Water scarcity and droughts
Water scarcity and droughts are both relevant topics for almost all Spanish RBDs.
Water scarcity is a key feature and significant water management issue of many RBMPs,
with dedicated chapters in all plans. Long term data series of available resources and flows
are usually available (1940-2006). Real consumption data is generally not available (e.g. the
PoM includes measures to improve datasets, controls, modelling of GWB, etc.) though not
recognised as a weakness or uncertainty of the water balances in the RBMPs.
Almost all plans include a strong measure package to improve/enlarge water supply to all
water users, following the trend scenarios, and considering water transfers (e.g. ES040,
ES060, ES070, to be detailed further in a National Hydrological Plan), dams (e.g. ES020,
ES040, ES064, ES091), desalination plants (e.g. ES060) or groundwater abstractions (e.g.
ES110). RBMPs also include demand-side measures (e.g. efficiency in irrigation, awareness-
raising). Measures to limit/restrict consumption are generally not considered. It is not
possible to assess the relevance of the share of the demand and supply-side measures. In any
case, for all RBMPs (except ES070) the mid-term water supply and demand (including
eflows estimations) data match.
In general, Drought Management Plans (DMP) are either already approved or foreseen in the
RBMPs as sub-plans, and they are more or less detailed in the RBMPs. DMPs have been
developed with statistical or water use relevant thresholds, but it is uncertain to what extent
the thresholds are related to the WFD objectives. Drought indicators will be applied for
requesting Article 4(6) exemptions, if necessary.
Flood risk management
In general, the RBMPs acknowledge the parallel development of the Flood Risk Management
Plans. Most plans (see also chapter 12.3) include also measures targeted to protect against
floods, though the type of measures (floodplain restoration, natural water retention measures,
river channelling, dam infrastructure) cannot often be identified in the PoMs, as these refer to
more abstract concepts like “Extreme Hydrological Situations”, “Flood Management” or
“Measures to prevent and reduce flood impacts”.
Adaptation to climate change
In all inter-community RBMPs and several regional RBMPs (e.g. ES060, ES110), climate
change has been taken into consideration according to the changes in water availability. The
IPH establishes in Chapter 3.5.2 that water balances shall include two long-term-average
timelines (1940-2005 and 1980-2005) and analyse their differences, in order to better
understand evolution and increase the robustness of the datasets. Furthermore, in Chapter
2.4.6 preliminary expected reductions of water availability by 2027 are fixed between -2 and
-11%, pending further detailed studies (note ES091 refers to another study). Furthermore, the
Spanish National Climate Change Adaptation Plan and/or Regional plans have been listed as
related plans or programmes though without further explaining the relation with the RBMPs.
94
kom (2015) 0120 - Ingen titel
The PoMs do not, in general, include specific adaptation measures, beyond the scope of
DMPs or research and studies to be carried out, though some exceptions might be mentioned
(e.g. ES017’s project on impacts and adaptation; ES091 mentions that water consumption
will increase due to irrigation of vineyards; ES122 regarding future flood risks – not yet
budgeted and pending the approval of the FRMP). No climate check has been carried out for
the RBMPs beyond the analysis of water balances and their match with climate change
predictions. Note that not all plans refer clearly to the outcomes of this analysis.
RECOMMENDATIONS
Spain should:
Ensure the
full adoption of the 2
nd
RBMPs
according to the WFD timetable, avoiding
delays.
Fill as soon as possible the
gaps in transposition
in the intra-community RBDs
Improve reporting to WISE,
ensuring that the information uploaded is the same as
reflected in the RBMPs. Report for the 2
nd
RBMPs to WISE the complete information
as regards significant pressures, including the results of the quantitative analysis,
translated into the simple qualitative report required in WISE.
Ensure all
water bodies
are properly delineated and categorised, in particular for the
Canary Islands, where so far no river, lake or transitional water bodies have been
identified.
Consider the review of the legislation to incorporate explicitly the
identification of
water bodies at risk
as a result of the pressure and impact analysis.
Ensure the completion as soon as possible of the
framework for status assessment
considering the following:
o
Reference conditions and boundaries for quality elements have to be binding.
Revise typology if needed to ensure that it is fit to serve as a basis for
classification.
o
Translate the results of the intercalibration exercise to the assessment systems
in a transparent way
o
The complete assessment framework, and in particular the intercalibration
results of 2013 and the new standards introduced by Directive 2013/39/EU for
existing priority substances, should be considered in the status assessments for
the second RBMP.
o
Fill the gaps in assessment systems for biological quality and supporting
elements, in particular for fish
o
Include the complete assessment systems for coastal and transitional waters.
o
Report transparently the confidence and limitations of the assessments as
appropriate.
Fill urgently the gaps in monitoring of surface waters and ensure consistent
monitoring with appropriate coverage (and thereby classify the status of all water
95
kom (2015) 0120 - Ingen titel
bodies). Ensure that
monitoring is adequately resourced and maintained
to inform
adequately the RBMPs and the decisions on the PoMs.
Extend
chemical monitoring
beyond water bodies affected by industrial discharges.
Consider as well atmospheric deposition and urban waste water discharges as relevant
sources of chemical pollution.
In the context of
designation of HMWBs,
develop clear criteria/thresholds to define
the significant adverse effect of the restoration measures on the water uses, and a
proper (real) assessment of other alternatives that could be better environmental
option.
Ensure that
GEP is correctly defined for all HMWBs and AWBs
(in terms of
biological condition and mitigation measures).
Ensure that
environmental objectives are established for all water bodies
in the
second cycle, including for HMWBs and AWBs. If no objectives are defined,
appropriate measures cannot be established either.
Ensure that the assessment of
groundwater quantitative status
considers all aspects
of the definition, including local falls in the water table that may lead to a risk in
water-dependent ecosystems, and including protected areas.
Develop a plan to
extend and generalise the use of flow meters
for all water
abstractions and uses, and to require users to report regularly to the river basin
authorities the volumes actually abstracted. Use this information to improve
quantitative management and planning.
Ensure that:
o
all
abstractions are registered and permits adapted
to the available
resources.
o
all
abstractions are metered
and subject to control of the river basin
authorities
o
the necessary amendments to the legislation are enacted to require
all
abstractions to be registered and regulated,
no matter under which regime
they got their permit (pre- or post-1985 Law).
Ensure that the
ecological flows
established
guarantee good ecological status.
If this
is not the case, report transparently the deviations and the justifications on the basis of
technical feasibility or disproportionate costs. In the relevant water bodies, consider
the objectives of water-dependent protected habitats and species in setting eflows.
Harmonise the consideration of
temporary streams
in the Mediterranean area on the
basis of sound ecologically-based scientific criteria and methodologies. Ensure the
distinction between situations of dry rivers due to natural causes (temporary streams)
from human induced (due to over-abstraction).
Provide better
justification of exemptions.
There is no analysis of the measures
needed to achieve good status. Therefore, it is not possible to justify whether
measures are disproportionately costly or technically unfeasible. Measures need to be
taken as far as possible in water bodies where exemptions are applied, and report
them in the RBMPs.
96
kom (2015) 0120 - Ingen titel
Ensure in the 2
nd
RBMPs that the
status of all water bodies is assessed
in accordance
with the WFD
before considering any further infrastructure
that would be liable to
cause deterioration of the status of water bodies or prevent the achievement of good
status. These
infrastructures can only be authorised if the conditions of article
4(7) are fulfilled.
The justification needs to be included in the RBMP. The
"declaration of general interest" in the Spanish legislation cannot be automatically
equated with the concept of "overriding public interest" in article 4(7)(c). This has to
be justified case by case in the 2
nd
RBMPs.
Avoid presenting the maintenance of
ecological flow in new dams
as an ecological
benefit of the dam, but consider it as a
mitigation measure.
Justify the flood
protection share on a case by case basis, including the justification that there is no
better environmental option.
Separate very clearly in 2
nd
RBMPs the
measures designed to achieve the
environmental objectives
from others. The latter need to be treated as Article 4(7)
exemptions whenever appropriate (i.e. modifications to water bodies liable to cause
deterioration or prevent the achievement of good status or potential).
Review the way the
modernisation of irrigation
is considered in the PoMs. Only
those projects which genuinely contribute to the WFD objectives should be labelled as
such. Such contribution should be justified and quantified in the RBMPs on a case by
case basis. The abstraction permits should be reviewed and set to meet the
environmental objectives and then modernisation is the efficiency measure put in
place to achieve compliance with the new permit condition.
Ensure that there is a proper
integration of the pressure and impact analysis, the
status assessment and the design of the programme of measures.
Avoid defining
the PoMs on the basis of business as usual and a non-transparent assessment of “what
can be done”, but rather on a genuine gap analysis that identifies which measures are
needed to achieve good status and can also support the justification of exemptions.
Ensure that RBMPs
apportion impacts to pressures and sources/drivers,
to
increase the understanding of which activities and sectors are responsible –an in
which proportion- for achieving objectives.
Ensure that RBMPs provide much
more information about the measures,
such as
their location (including the number of water bodies), classification (basic, other
basic, supplementary) and character (voluntary or binding), the targeted sector and
source, the pressure they address (beyond the current grouping by general topics) and
the expected specific effects in terms of status improvement.
Consider and
prioritise the use of green infrastructure and/or natural water
retention measures
that provide a range of environmental (improvements in water
quality, increase of infiltration and thus aquifer recharge, flood protection, habitat
conservation etc.), social and economic benefits which can be in many cases more
cost-effective than grey infrastructure, as well as other restoration measures, removal
of dams and other hydro morphological barriers.
Ensure that the
process of selecting (or not) measures
is more sound and
transparent, providing in the RBMPs not only statements that a cost-effectiveness
analysis has been carried out, but also informing on the measures that have been
97
kom (2015) 0120 - Ingen titel
considered in the analysis, its results and how this assessment has influenced the
selection of measures.
Clarify in the RBMPs what
technical measures
are behind legislation and how much
they contribute to closing the gap to good status as basic measures are mostly
presented as legislative acts (e.g. articles of the Water Law and related regulations).
Ensure that appropriate basic measures are established for
control of diffuse
pollution.
The basic measures for diffuse pollution should go
beyond the Nitrates
Directive
codes of practice, which are voluntary instruments limited to nitrates issues.
They do not address other agricultural pressures (phosphates, pesticides, etc.).
Mandatory measures that are controllable should be included in the 2
nd
RBMPs.
Ensure that
monitoring of drinking water protected areas
include all relevant
parameters of the Drinking Water Directive.
Define the
status of protected areas
to ensure a harmonised approach across the
country.
Carry out a comprehensive study together with the responsible authorities for nature
to derive the
quantitative and qualitative needs for protected habitats and species,
translated into specific objectives for each protected area which should be inserted in
the RBMPs. Appropriate monitoring and measures should also be included in the
RBMPs.
Introduce
volumetric abstraction fees for all users
(including self-abstraction of
groundwater) covering properly calculated environmental and resource costs. Ensure
that the cost-recovery instruments are adapted as soon as possible to the WFD to
ensure that they provide adequate incentives to use the water efficiently. In addition,
the revenues of cost-recovery instruments should be sufficient for the river basin
authorities to effectively execute their water management tasks (update and
maintenance of register of abstractions, monitoring, etc.).
Develop a basic
harmonisation of the minimum elements to be included in water
tariffs for drinking water supply and waste water treatment
for the 2
nd
RBMPs to
ensure long-term sustainability of investments in water protection across the country.
Consider water use for energy production (hydropower and cooling) as
water service,
and relevant information (cost recovery, environmental and resource costs, "discount
rates for dams") should be transparently presented in the updated RBMPs.
Present transparently subsidies and cross-subsidies
in the 2
nd
RBMPs (i.e.
desalinated water, dam construction, etc.) and justify dam discount calculation on a
case by case basis.
Extend calculation of
environmental costs
to costs related to energy production
(hydropower, cooling) and diffuse pollution from agriculture.
Reinforce the
cooperation with Portugal and France
in shared River Basin Districts
(covering characterisation, pressures and impacts, monitoring, assessment of status,
public consultation, measures, etc.), ensuring that there is a common understanding
for transboundary water bodies and catchments for these issues. The outcomes of such
cooperation (in particular with Portugal) should be reflected in the RBMPs or ad-hoc
background documents.
98
kom (2015) 0120 - Ingen titel
99